首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
We present current-voltage characteristics of HTSC point-contacts prepared by the break-junction technique with YBCO single crystals. We compare the measured I(V)-, $\frac{{dV}} {{dI}}(V)$ (V)- and $\frac{{d^2 V}} {{dI^2 }}(V)$ (V)-characteristics to calculated characteristics of the OTBK-theory [1], which describes SINIS-junctions in which multiple Andreevreflection (AR) occurs. Taking into account systematic deviations between characteristics measured with conventional weak-links and characteristics calculated with the OTBK-theory, discussed in [2] and [3], we can demonstrate, that the characteristics of the YBCO breakjunctions clearly show all features, which indicate the occurrence of multiple AR. Thus we determine the energy gap of YBCO with a high precision to 2Δ = (42 ± 2) meV. In addition we find, that the structures in the characteristics at eV = 2Δ always show a broadening, whereas the structures at higher order subharmonic gap voltages $\left( {eV = \frac{{2\Delta }} {n}} \right)$ are not broadened. The reason for this behavior is subject for discussion. The investigation of the temperature dependence of the energy gap shows that 2Δ decreases substantially with rising temperature already at low temperatures. We confirm this result with two other independent methods. Break-junctions with very small or vanishing interface barriers at the two NIS-phase boundaries show characteristics which indicate also the occurrence of multiple Andreev-reflection, which cannot be described with the OTBK-theory. We demonstrate, that these characteristics can be explained with the relaxation time model for SNS-junctions published by Kümmel et al. [4].  相似文献   

2.
The concentration of lithium ions in the cathode of lithium ion cells has been obtained by solving the materials balance equation $$\frac{{\partial c}}{{\partial t}} = \varepsilon ^{1/2} D\frac{{\partial ^2 c}}{{\partial x^2 }} + \frac{{aj_n (1--t_ + )}}{\varepsilon }$$ by Laplace transform. On the assumption that the cell is fully discharged when there are zero lithium ions at the current collector of the cathode, the discharge timet d is obtained as $$\tau = \frac{{r^2 }}{{\pi ^2 \varepsilon ^{1/2} }}\ln \left[ {\frac{{\pi ^2 }}{{r^2 }}\left( {\frac{{\varepsilon ^{1/2} }}{J} + \frac{{r^2 }}{6}} \right)} \right]$$ which, when substituted into the equationC=It d /M, whereI is the discharge current andM is the mass of the separator and positive electrode, an analytical expression for the specific capacity of the lithium cell is given as $$C = \frac{{IL_c ^2 }}{{\pi {\rm M}D\varepsilon ^{1/2} }}\ln \left[ {\frac{{\pi ^2 }}{2}\left( {\frac{{FDc_0 \varepsilon ^{3/2} }}{{I(1 - t_ + )L_c }} + \frac{1}{6}} \right)} \right]$$   相似文献   

3.
Using algebraic methods, we find the three-loop relation between the bare and physical couplings of one-flavourD-dimensional QED, in terms of Γ functions and a singleF 32 series, whose expansion nearD=4 is obtained, by wreath-product transformations, to the order required for five-loop calculations. Taking the limitD→4, we find that the \(\overline {MS} \) coupling \(\bar \alpha (\mu )\) satisfies the boundary condition $$\begin{gathered} \frac{{\bar \alpha (m)}}{\pi } = \frac{\alpha }{\pi } + \frac{{15}}{{16}}\frac{{\alpha ^3 }}{{\pi ^3 }} + \left\{ {\frac{{11}}{{96}}\zeta (3) - \frac{1}{3}\pi ^2 \log 2} \right. \hfill \\ \left. { + \frac{{23}}{{72}}\pi ^2 - \frac{{4867}}{{5184}}} \right\}\frac{{\alpha ^4 }}{{\pi ^4 }} + \mathcal{O}(\alpha ^5 ), \hfill \\ \end{gathered} $$ wherem is the physical lepton mass and α is the physical fine structure constant. Combining this new result for the finite part of three-loop on-shell charge renormalization with the recently revised four-loop term in the \(\overline {MS} \) β-function, we obtain $$\begin{gathered} \Lambda _{QED}^{\overline {MS} } \approx \frac{{me^{3\pi /2\alpha } }}{{(3\pi /\alpha )^{9/8} }}\left( {1 - \frac{{175}}{{64}}\frac{\alpha }{\pi } + \left\{ { - \frac{{63}}{{64}}\zeta (3)} \right.} \right. \hfill \\ \left. { + \frac{1}{2}\pi ^2 \log 2 - \frac{{23}}{{48}}\pi ^2 + \frac{{492473}}{{73728}}} \right\}\left. {\frac{{\alpha ^2 }}{{\pi ^2 }}} \right), \hfill \\ \end{gathered} $$ at the four-loop level of one-flavour QED.  相似文献   

4.
The distinction between avalanche and tunneling breakdown in one-sided abrupt junctions is made on the basis of a new, simple expression for the tunneling breakdown field strengthF t. It is shown thatF t [V/cm] depends upon the temperatureT [K], the reduced tunneling effective massm eff + /m o and the semiconductor energy band gapE g [eV] according to the following equation $$F_t = 1.76 \cdot 10^6 \cdot \left( {\frac{T}{{300}}} \right) \cdot \left( {\frac{{m_{eff}^ + }}{{m_0 }} \cdot E_g } \right)^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} [V/cm].$$ Using published calculations for the avalanche breakdown voltage, the result is applied to the semiconductors Ge, Si, GaAs and GaP at 300 K and InSb at 77K.  相似文献   

5.
The contribution to the sixth-order muon anomaly from second-order electron vacuum polarization is determined analytically to orderm e/m μ. The result, including the contributions from graphs containing proper and improper fourth-order electron vacuum polarization subgraphs, is $$\begin{gathered} \left( {\frac{\alpha }{\pi }} \right)^3 \left\{ {\frac{2}{9}\log ^2 } \right.\frac{{m_\mu }}{{m_e }} + \left[ {\frac{{31}}{{27}}} \right. + \frac{{\pi ^2 }}{9} - \frac{2}{3}\pi ^2 \log 2 \hfill \\ \left. { + \zeta \left( 3 \right)} \right]\log \frac{{m_\mu }}{{m_e }} + \left[ {\frac{{1075}}{{216}}} \right. - \frac{{25}}{{18}}\pi ^2 + \frac{{5\pi ^2 }}{3}\log 2 \hfill \\ \left. { - 3\zeta \left( 3 \right) + \frac{{11}}{{216}}\pi ^4 - \frac{2}{9}\pi ^2 \log ^2 2 - \frac{1}{9}log^4 2 - \frac{8}{3}a_4 } \right] \hfill \\ + \left[ {\frac{{3199}}{{1080}}\pi ^2 - \frac{{16}}{9}\pi ^2 \log 2 - \frac{{13}}{8}\pi ^3 } \right]\left. {\frac{{m_e }}{{m_\mu }}} \right\} \hfill \\ \end{gathered} $$ . To obtain the total sixth-order contribution toa μ?a e, one must add the light-by-light contribution to the above expression.  相似文献   

6.
The effect of metal-to-oxide grain boundary layer in $ {\text{Ni}} - {\text{BaCe}}_{{0.8}} {\text{Y}}_{{0.2}} {\text{O}}_{{3 - \delta }} $ (BCY) cermet membrane on hydrogen permeation was studied by applying the different size of oxide grain on Ni-BCY membranes. Two types of cermet membranes having different grain size of oxide were prepared by using different starting particle size of oxide powder. The hydrogen flux of coarse-oxide-grain membrane showed higher flux than that of small-oxide-grain membrane. It was understood that the negative potential at metal-to-oxide grain boundary, reference to the bulk oxide ( $ \phi _{0} < \phi _{\infty } = 0 $ ), was developed, and the accumulation of the effectively positively charged protons may occur at the grain boundary layer (space charge layer), which may result in providing highly conductive proton path by shifting the charge neutrality condition from $ {\left[ {OH^{ \bullet }_{O} } \right]} = {\left[ {Y^{/}_{{Ce}} } \right]} $ to $ {\left[ {OH^{ \bullet }_{O} } \right]} = n $ .  相似文献   

7.
It is supposed that the effective Lagrangian of interaction of a magnetic field with a neutrino can be written in the form $$L_{eff} = \frac{{G_{\mathbf{\gamma }} }}{{m_W^2 }} \frac{{\partial ^2 A^\mu }}{{\partial x^v \partial x_v }}[\bar \Psi _v {\mathbf{\gamma }}_\mu (1 + {\mathbf{\gamma }}^5 )\Psi _v ].$$ Formulas are obtained for the emission of neutrinos by alternating fields. In particular, neutrino synchrotron emission and neutrino emission in the case of collision of two classical charges are considered. Arguments are presented that this mechanism can make a contribution to the neutrino luminosity of stars.  相似文献   

8.
9.
The mechanisms of pre-equilibrium nuclear reactions are investigated within the Statistical Multistep Direct Process (SMDP) + Statistical Multistep Compound Process (SMCP) formalism. It has been shown that from an analysis of linear part in such dependences as $$\ln \left[ {{{\frac{{d^2 \sigma }}{{d\varepsilon _b d\Omega _b }}} \mathord{\left/ {\vphantom {{\frac{{d^2 \sigma }}{{d\varepsilon _b d\Omega _b }}} {\varepsilon _b^{1/2} }}} \right. \kern-\nulldelimiterspace} {\varepsilon _b^{1/2} }}} \right]upon\varepsilon _b $$ and $$\ln \left[ {{{\frac{{d\sigma ^{SMDP \to SMCP} }}{{d\varepsilon _b }}} \mathord{\left/ {\vphantom {{\frac{{d\sigma ^{SMDP \to SMCP} }}{{d\varepsilon _b }}} {\frac{{d\sigma ^{SMDP} }}{{d\varepsilon _b }}}}} \right. \kern-\nulldelimiterspace} {\frac{{d\sigma ^{SMDP} }}{{d\varepsilon _b }}}}} \right]upon{{U_B } \mathord{\left/ {\vphantom {{U_B } {\left( {E_a - B_b } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {E_a - B_b } \right)}}$$ one can extract information about the type of mechanism (SMDP, SMCP, SMDP→SMCP) and the number of stages of the multistep emission of secondary particles. In the above approach, we have discussed the experimental data for a broad class of reactions in various entrance and exit channels.  相似文献   

10.
We give an upper bound on the decay of correlation function for the plane rotator model with Hamiltonian $$ - \frac{1}{2}\mathop \sum \limits_{xy} \frac{{J_{xy} \cos (\theta _x - \theta _y )}}{{\| {x - y} \|^{({3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2} + \varepsilon )^d } }}$$ in dimensiond=1 andd=2 when (J xy are independent random variables with mean zero.  相似文献   

11.
We show how to prove and to understand the formula for the “Pontryagin” indexP for SU(N) gauge fields on the HypertorusT 4, seen as a four-dimensional euclidean box with twisted boundary conditions. These twists are defined as gauge invariant integers moduloN and labelled byN μv (=?N μv ). In terms of these we can write (ν∈#x2124;) $$P = \frac{1}{{16\pi ^2 }}\int {Tr(G_{\mu v} \tilde G_{\mu v} )d_4 x = v + \left( {\frac{{N - 1}}{N}} \right) \cdot \frac{{n_{\mu v} \tilde n_{\mu v} }}{4}} $$ . Furthermore we settle the last link in the proof of the existence of zero action solutions with all possible twists satisfying \(\frac{{n_{\mu v} \tilde n_{\mu v} }}{4} = \kappa (n) = 0(\bmod N)\) for arbitraryN.  相似文献   

12.
The hyperfine structure and the Stark effect shift of the 4d5s5p z 2 F 5/2 states in the Y I spectrum were investigated by level-crossing technique. Between the Zeeman effect region and the Paschen-Back region of hyperfine structure states some of the levels cross. The resonance radiation of these coherently excited levels show an interference effect of the scattering amplitudes in the crossing region. The level-crossing signals give information about hfs splitting and lifetime of the excited states under investigation. The magnetic hfs splitting factorsA of the 4d5s5p z 2 F 5/2, 7/2 states and their lifetimes were deduced. $$\begin{gathered} |A (z^2 F_{5/2} )| = (23.8 \pm 0.04) MHz \frac{{g_J }}{{0.854}} \hfill \\ |A (z^2 F_{7/2} )| = (84.08 \pm 0.01) MHz \frac{{g_J }}{{1.148}} \hfill \\ \tau (z^2 F_{5/2} ) = (46 \pm 3) 10^{ - 9} s \frac{{0.854}}{{g_J }} \hfill \\ \tau (z^2 F_{7/2} ) = (44 \pm 4) 10^{ - 9} s \frac{{1.148}}{{g_J }}. \hfill \\ \end{gathered} $$ With an electric field parallel to the magnetic field a shift of the level-crossing signals of the 4d5s5p z 2 F 5/2, 7/2 states was observed, and the Stark constants β were deduced. $$\begin{gathered} |\beta (z^2 F_{5/2} )| = (0.0020 \pm 0.0002) MHz/(kV/cm)^2 \hfill \\ |\beta (z^2 F_{7/2} )| = (0.0025 \pm 0.0015) MHz/(kV/cm)^2 . \hfill \\ \end{gathered} $$   相似文献   

13.
B. Amami  M. Addou  F. Millot  A. Sabioni  C. Monty 《Ionics》1999,5(5-6):358-370
Measurements of18O self-diffusion in hematite (Fe2O3) natural single crystals have been carried out as a function of temperature at constant partial pressure aO 2=6.5·10?2 in the temperature range 890 to 1227 °C. The aO 2 dependence of the oxygen self-diffusion coefficient at fixed temperature T=1150 °C has also been deduced in the aO 2 range 4.5·10?4 - 6.5·10?1. The concentration profiles were established by secondary-ion mass spectrometry; several profiles exhibit curvatures or long tails; volume diffusion coefficients were computed from the first part of the profiles using a solution taking into account the evaporation and the exchange at the surface. The results are well described by $$D_O \left( {{{cm^2 } \mathord{\left/ {\vphantom {{cm^2 } s}} \right. \kern-\nulldelimiterspace} s}} \right) = 2.7 \cdot 10^8 a_{O_2 }^{ - 0.26} \exp \left( { - \frac{{542\left( {{{kJ} \mathord{\left/ {\vphantom {{kJ} {mol}}} \right. \kern-\nulldelimiterspace} {mol}}} \right)}}{{RT}}} \right)$$ From fitting a grain boundary diffusion solution to the profile tails, the oxygen self-diffusion coefficient in sub-boundaries has been deduced. They are well described by $$D''_O \left( {{{cm^2 } \mathord{\left/ {\vphantom {{cm^2 } s}} \right. \kern-\nulldelimiterspace} s}} \right) = 3.2 \cdot 10^{25} a_{O_2 }^{ - 0.4} \exp \left( { - \frac{{911\left( {{{kJ} \mathord{\left/ {\vphantom {{kJ} {mol}}} \right. \kern-\nulldelimiterspace} {mol}}} \right)}}{{RT}}} \right)$$ Experiments performed introducing simultaneously18O and57Fe provided comparative values of the self-diffusion coefficients in volume: iron is slower than oxygen in this system showing that the concentrations of atomic point defects in the iron sublattice are lower than the concentrations of atomic point defects in the oxygen sublattice. The iron self-diffusion values obtained at T>940 °C can be described by $$D_{Fe} \left( {{{cm^2 } \mathord{\left/ {\vphantom {{cm^2 } s}} \right. \kern-\nulldelimiterspace} s}} \right) = 9.2 \cdot 10^{10} a_{O_2 }^{ - 0.56} \exp \left( { - \frac{{578\left( {{{kJ} \mathord{\left/ {\vphantom {{kJ} {mol}}} \right. \kern-\nulldelimiterspace} {mol}}} \right)}}{{RT}}} \right)$$ The exponent - 1/4 observed for the oxygen activity dependence of the oxygen self-diffusion in the bulk has been interpreted considering that singly charged oxygen vacancies V O ? are involved in the oxygen diffusion mechanism. Oxygen activity dependence of iron self-diffusion is not known accurately but the best agreement with the point defect population model is obtained considering that iron self-diffusion occurs both via neutral interstitals Fe x i and charged ones.  相似文献   

14.
Several new levels including two isomeric states have been established in134Ba. Spin and parity assignments of 10+ and 5? are proposed for the isomers. The former may have a \(\left( {vh_{1 1/2} } \right)_{10^ + } \) configuration while the latter may be either \((vs_{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}} vh_{{{11} \mathord{\left/ {\vphantom {{11} 2}} \right. \kern-0em} 2}} )_{5 - } \) or \(\left( {vd_{3/2} vh_{1 1/2} } \right)_{5^ - } \) .  相似文献   

15.
We consider the integrated density of statesN(λ) of the difference Laplacian ?Δ on the modified Koch graph. We show thatN(λ) increases only with jumps and a set of jump points ofN(λ) is the set of eigenvalues of ?Δ with the infinite multiplicity. We establish also that $$0< C_1 \leqslant \mathop {\lim }\limits_{\lambda \to 0} \frac{{N(\lambda )}}{{\lambda ^{d_s /2} }}< \overline {\mathop {\lim }\limits_{\lambda \to 0} } \frac{{N(\lambda )}}{{\lambda ^{d_s /2} }} \leqslant C_2< \infty$$ whered s =2log5/log(40/3) is the spectral dimension of MKG.  相似文献   

16.
The effect of collisions on transverse waves in a homogeneous, field free plasma is investigated by means of Gross-Krook collision model. The dispersion relation is calculated by assuming the collision frequency to be small andKλ D ?1. The damping rate ω I is obtained as $$\omega _I = \frac{{\nu _{ei} }}{2}\frac{{\omega _p^2 }}{{\omega _0^2 }}\left[ {1 + \frac{{3K^2 \lambda _D^2 \omega _p^2 }}{{\omega _0^2 }} - \frac{{K^2 \lambda _D^2 \omega _p^4 }}{{\omega _0^4 }}} \right] + \frac{{\nu _{ee} }}{2}\frac{{\omega _p^2 }}{{\omega _0^2 }}\left( {\frac{{K^2 \lambda _D^2 \omega _p^2 }}{{\omega _0^2 }}} \right)$$ where ω 0 2 =c 2 K 2 2 p , andv ei andv ee are electron-ion and electron-electron collision frequency respectively.  相似文献   

17.
The perturbation method of Lindstedt is applied to study the non linear effect of a nonlinear equation $$\nabla ^2 {\rm E} - \frac{1}{{c^2 }}\frac{{\partial ^2 {\rm E}}}{{\partial t^2 }} - \frac{{\omega _0^2 }}{{c^2 }}{\rm E} + \frac{{2v}}{{c^2 }}\frac{{\partial {\rm E}}}{{\partial t}} + E^2 \left[ {\frac{{\partial {\rm E}}}{{\partial t}} \times A} \right] = 0,$$ where (A. E)=0 andA,c, ω 0 andν are constants in space and time. Amplitude dependent frequency shifts and the solution up to third order are derived.  相似文献   

18.
Studies of conic-type electric-field structures are continued. The electric field is investigated, and its potential is described by the following analytical expression. $\Phi (x,y,z) = \frac{x}{{z + \sqrt {x^2 + y^2 + z^2 } }}$ . Expression (1) is derived on the basis of Donkin’s formula. Properties of these electric fields are described in Part I [1].  相似文献   

19.
On the basis of the analysis of the adele group (Tate's formula), a regularization for the divergent infinite product ofp-adic Г-functions $$\Gamma _p (\alpha ) = \frac{{1 - p^{\alpha - 1} }}{{[ - p^{ - \alpha } }}$$ is proposed, and the adelic formula is proved $$reg\coprod\limits_{p = 2}^\infty {\Gamma _p (\alpha )} = \frac{{\zeta (\alpha )}}{{\zeta (1 - \alpha )}}$$ whereζ(α) is the Riemannζ-function.  相似文献   

20.
We derive model independent lower bounds for the sums of effective quark masses \(\bar m_u + \bar m_d \) and \(\bar m_u + \bar m_s \) . The bounds follow from the combination of the spectral representation properties of the hadronic axial currents two-point functions and their behavior in the deep euclidean region (known from a perturbative QCD calculation to two loops and the leading non-perturbative contribution). The bounds incorporate PCAC in the Nambu-Goldstone version. If we define the invariant masses \(\hat m\) by $$\bar m_i = \hat m_i \left( {{{\frac{1}{2}\log Q^2 } \mathord{\left/ {\vphantom {{\frac{1}{2}\log Q^2 } {\Lambda ^2 }}} \right. \kern-\nulldelimiterspace} {\Lambda ^2 }}} \right)^{{{\gamma _1 } \mathord{\left/ {\vphantom {{\gamma _1 } {\beta _1 }}} \right. \kern-\nulldelimiterspace} {\beta _1 }}} $$ and <F 2> is the vacuum expectation value of $$F^2 = \Sigma _a F_{(a)}^{\mu v} F_{\mu v(a)} $$ , we find, e.g., $$\hat m_u + \hat m_d \geqq \sqrt {\frac{{2\pi }}{3} \cdot \frac{{8f_\pi m_\pi ^2 }}{{3\left\langle {\alpha _s F^2 } \right\rangle ^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} }}} $$ ; with the value <α u F 2?0.04GeV4, recently suggested by various analysis, this gives $$\hat m_u + \hat m_d \geqq 35MeV$$ . The corresponding bounds on \(\bar m_u + \bar m_s \) are obtained replacingm π 2 f π bym K 2 f K . The PCAC relation can be inverted, and we get upper bounds on the spontaneous masses, \(\hat \mu \) : $$\hat \mu \leqq 170MeV$$ where \(\hat \mu \) is defined by $$\left\langle {\bar \psi \psi } \right\rangle \left( {Q^2 } \right) = \left( {{{\frac{1}{2}\log Q^2 } \mathord{\left/ {\vphantom {{\frac{1}{2}\log Q^2 } {\Lambda ^2 }}} \right. \kern-\nulldelimiterspace} {\Lambda ^2 }}} \right)^d \hat \mu ^3 ,d = {{12} \mathord{\left/ {\vphantom {{12} {\left( {33 - 2n_f } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {33 - 2n_f } \right)}}$$ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号