首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
We have used X-ray photoelectron spectroscopy (XPS), infrared reflection-absorption spectroscopy, and field-emission scanning electron microscopy (SEM) to investigate the formation of single- and two-component molecular patterns by direct photochemical grafting of alkenes onto hydrogen-terminated diamond surfaces using sub-band gap 254 nm ultraviolet light. Trifluoroacetamide-protected 1-aminodec-1-ene (TFAAD) and 1-dodecene were used as model systems for grafting. Illumination with sub-band gap light can induce several different kinds of excitations, including creation of mobile electrons and holes in the bulk and creation of radicals at the surface and in the adjacent fluid, which induce grafting of the alkenes to the surface. SEM images of patterned molecular layers on nanocrystalline diamond surfaces reveal sharp transitions between functionalized and nonfunctionalized regions consistent with diffraction-limited excitation. However, identical experiments on type IIb single-crystal diamond yield a significantly more extended transition region in the molecular pattern. These data imply that the spatial resolution of the direct molecular photopatterning is affected by diffusion of charge carriers in the bulk of the diamond samples. The molecular contrast between surfaces with different terminations is consistent with the expected trends in molecular electron affinity. These results provide new mechanistic insights into the direct patterning and imaging of molecular monolayers on surfaces.  相似文献   

2.
The grafting of molecular layers to carbon-based materials provides a way to combine the high chemical and thermal stability of these materials with surface properties such as chemical recognition or reactivity. The functionalization of surfaces with ultraviolet light has emerged as a way to modify difficult-to-functionalize materials, such as diamond. We have performed a combined experimental and computational investigation of the photochemical reaction of terminal alkenes with hydrogen-terminated carbon surfaces. 1-Alkenes carrying various terminal functional groups (-NHCOCF3, -NHCOO(tert-butyl), -COOCH3, -CH3) were grafted from the neat liquids using 254 nm light. These layers were characterized using X-ray Photoelectron Spectroscopy and Infrared Reflectance Absorption Spectroscopy. Pronounced differences in reactivity were observed between the molecules: trifluoroacetamide-terminated alkenes grafted the fastest and yielded self-terminating layers after approximately 4 h. Ultraviolet photoelectron spectroscopy and photocurrent measurements show that the grafting reaction involves photoemission of electrons into the liquid. Density functional calculations show that the reactivities of the four molecules are correlated with their electron affinities, with the trifluoroacetamide group acting as the best electron acceptor and having the highest reactivity. Our results demonstrate that photoejection of electrons from the solid into the acceptor levels of the alkenes initiates the functionalization reaction and controls the overall rate. Finally, marginally reactive n-alkenes were induced to react and form dense monolayers by seeding the carbon surface with small amounts of a good electron acceptor, such as the trifluoroacetamide moiety. This study provides important new mechanistic insights into the use of ultraviolet light to initiate grafting of alkenes onto surfaces.  相似文献   

3.
Silicon(111)-H surfaces were derivatized with omega-functionalized alkenes in UV-mediated and thermal hydrosilylation reactions to give Si-C linked monolayers. Additional molecular layers of organic compounds were coupled either directly or via linker molecules to the functionalized alkyl monolayers. In the first instance, amino-terminated monolayers were prepared from a tert-butoxycarbonyl-protected omega-aminoalkene followed by removal of the protecting group. Various thiols were coupled to the monolayer using a heterobifunctional linker, which introduced maleimide groups onto the surface. In the second system, N-hydroxysuccinimide (NHS) ester-terminated monolayers were formed by reaction of Si-H with N-succinimidyl undecenoate. The reactivity of the NHS ester groups was confirmed by further modification of the monolayer. The stepwise assembly of these multilayer structures was characterized by X-ray reflectometry and X-ray photoelectron spectroscopy.  相似文献   

4.
Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) are used to compare the reaction of acrylonitrile with Si(001) and C(001) (diamond) surfaces. Our results show that reaction with Si(001) and C(001) yield very different product distributions that result from fundamental differences in the ionic character of these surfaces. While acrylonitrile reacts with the C(001) surface via a [2 + 2] cycloaddition reaction in a manner similar to nonpolar molecules such as alkenes and disilenes, reaction with the Si(001) surface occurs largely through the nitrile group. This work represents the first experimental example of how differences in dimer structure lead to very different chemistry for C(001) compared to that for Si(001). The fact that Si(001) reacts with the strongly polar nitrile group of acrylonitrile indicates that the zwitterionic character of this surface controls its reactivity. C(001) dimers, on the other hand, behave more like a true molecular double bond, albeit a highly strained one. Consequently, while alternative strategies will be necessary for chemical modification of Si(001), traditional schemes from organic chemistry for functionalization of alkenes and disilenes may be available for building molecular layers on C(001).  相似文献   

5.
Covalently attached organic layers on indium tin oxide (ITO) surfaces were prepared by the photochemical grafting with 1-alkenes. The surface modification was monitored with static water contact angle, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM) measurements. Hydrophobic methyl-terminated ITO surfaces can be obtained via the grafting of tetradec-1-ene, whereas the attachment of ω-functionalized 1-alkenes leads to functionalized ITO surfaces. The use of a C≡C-Ge(CH(3))(3) terminus allows for facile tagging of the surface with an azido group via a one-pot deprotection/click reaction, resulting in bio/electronically active interfaces. The combination of nonaggressive chemicals (alkenes), mild reaction conditions (room temperature), and a light-induced grafting that facilitates the direct patterning of organic layers makes this simple approach highly promising for the development of ITO-based (bio)electronic devices.  相似文献   

6.
Diamond is an excellent substrate for many sensing and electronic applications because of its outstanding stability in biological and aqueous environments. When the diamond surface is H-terminated, it can be covalently modified with organic alkenes using wet photochemical methods that are surface-mediated and initiated by the ejection of electrons from the diamond. To develop a better understanding of the photochemical reaction mechanism, we examine the effect of applying an electrical bias to the diamond samples during the photochemical reaction. Applying a 1 V potential between two diamond electrodes significantly increases the rate of functionalization of the negative electrode. Cyclic voltammetry and electrochemical impedance measurements show that the 1 V potential induces strong downward band-bending within the diamond film of the negative electrode. At higher voltages a Faradaic current is observed, with no further acceleration of the functionalization rate. We attribute the bias-dependent changes in rate to a field effect, in which the applied potential induces a strong downward band-bending on the negative electrode and facilitates the ejection of electrons into the adjacent fluid of reactant organic alkenes. We also demonstrate the ability to directly photopattern the surface with reactant molecules on length scales of <25 microm, the smallest we have measured, using simple photomasking techniques.  相似文献   

7.
We have investigated the photochemical grafting of organic alkenes to atomically flat ZnO(10 ?10) single crystals and ZnO nanorods as a way to produce functional molecule-semiconductor interfaces. Atomic force microscopy shows that photochemical grafting produces highly conformal, smooth molecular layers with no detectable changes in the underlying structure of the ZnO terraces or steps. X-ray photoelectron spectroscopy measurements show that grafting of a methyl ester-terminated alkene terminates near one monolayer, while alkenes bearing a trifluoroacetamide-protected amine form very smooth multilayers. Even with multilayers, it is possible to deprotect the amines and to link a second molecule to the surface with excellent efficiency and without significant loss of molecules from the surface. This demonstrates that the use of photochemical grafting, even in the case of multilayer formation, enables multistep chemical processes to be conducted on the ZnO surface. Photoresponse measurements demonstrate that functionalization of the surface does not affect the ability to induce field effects in the underlying ZnO, thereby suggesting that this approach to functionalization may be useful for applications in sensing and in hybrid organic-inorganic transistors and related devices.  相似文献   

8.
有机嫁接;分析;界面微分电容法单晶硅表面单分子膜质量的检测  相似文献   

9.
Recent studies have shown that semiconductor surfaces such as silicon and diamond can be functionalized with organic monolayers, and that these monolayer films can be used to tether biomolecules such as DNA to the surfaces. Electrical measurements of these interfaces show a change in response to DNA hybridization and other biological binding processes, but the fundamental nature of the electrical signal transduction has remained unclear. We have explored the electrical impedance of polycrystalline and single-crystal diamond surfaces modified with an organic monolayer produced by photochemical reaction of diamond with 1-dodecene. Our results show that, by measuring the impedance as a function of frequency and potential, it is possible to dissect the complex interfacial structure into frequency ranges where the total impedance is controlled by the molecular monolayer, by the diamond space-charge region, and by the electrolyte. The results have implications for understanding the ability to use molecularly modified semiconductor surfaces for applications such as chemical and biological sensing.  相似文献   

10.
This work concerns a first step toward the use of self-assembled monolayers derived from thiols as coupling layers between a zinc surface and organic coatings. The adsorption, structure, and aging of alkanelthiol monolayers on zinc substrates have been studied by contact angle measurements, infrared spectroscopy, and electrochemistry. The thiols self-assemble on the zinc surface to form a highly hydrophobic monolayer. The molecules are well organized with very few gauche defects, oriented nearly normal to the surface, and protect the zinc from oxidation in a neutral aqueous medium.  相似文献   

11.
The electrochemical formation and characterization of decanoic, myristic, palmitic, and stearic acid self-assembled monolayers on a native oxide surface of 316L stainless steel have been studied. This work describes a new approach to surface modification of stainless steel in which the self-assembly of n-alkanoic acids is facilitated by applying a potential to the stainless steel in an organic electrolyte solution. While decanoic acid forms a disorganized monolayer as a result of sweeping the potential in an acetonitrile solution containing 0.1 mM of the respective acid, longer acids, that is, myristic and palmitic acids, form highly ordered closed-packed monolayers. This electrochemical approach results in highly reproducible monolayers that are deposited within a shorter time than the traditional assembly process. The monolayers were characterized by cyclic voltammetry, double-layer capacity (ac voltammetry), contact angle measurements, X-ray photoelectron spectroscopy, and external reflection-absorption Fourier transform infrared spectroscopy. The utilization and implications of this modification technique are discussed.  相似文献   

12.
Photochemical reactions of terminal alkenes with hydrogen-terminated silicon surfaces are being used by many groups to produce covalently attached organic monolayers with a wide range of terminal functionalities. Despite the considerable activity in this area, the mechanism for these reactions has not been definitively established. Here we present STM and HREELS data on a sequence of partially reacted samples, showing the progress of the reaction. The attachment reaction is found to proceed via formation of irregularly shaped islands that appear to grow by a pseudorandom walk process. These data support a radical chain propagation mechanism previously suggested for this reaction. However, since the photons employed here (447 nm) lack sufficient energy for Si-H bond cleavage, an alternate mechanism for initiating the chain reaction appears to be required.  相似文献   

13.
Self-assembled monolayers (SAMs) of cobalt(II) 5,10,15,20-tetrakis(4-tert-butylphenyl)-porphyrin, a promising material for optical, photoelectrochemical, and chemical sensor applications, were prepared on Au(111) via axial ligation to 4-aminothiophenol, and studied by several surface science techniques. Scanning tunneling microscopy (STM) and spectroscopy (STS) measurements showed the apparent topology of the Au(111) herringbone structure reconstruction, but with bias-dependent contrast images and asymmetric I/V characteristics. Photoelectron spectroscopy confirmed the presence of metalloporphyrins on the surface, whereas near-edge X-ray absorption (NEXAFS) measurements revealed that the porphyrin ring was tilted by about 70 degrees with respect to the surface plane. The above effects are ascribed to the presence of oriented molecular dipole layers between the metal and the organic material as confirmed by a comparison with first-principles density-functional theory calculations. The measured bias-dependent STM profiles have been reproduced by a simple monodimensional tunneling model.  相似文献   

14.
Poly(acrylic acid) polyelectrolyte brushes were synthesized by surface-initiated atom transfer radical polymerization (SI-ATRP) of tert-butyl acrylate on planar gold surfaces and subsequent hydrolysis. Three types of monolayers with different numbers of thiol binding sites per initiating unit were used. The binding strength to the gold surface turned out to be of crucial importance for the formation of uniform brush layers after acidic hydrolysis. The monolayers and polymer brushes were characterized by ellipsometry, infrared spectroscopy, water contact angle measurements, atomic force microscopy, and X-ray photoelectron spectroscopy. Their interaction with [(diglycidylamino)propyl]silsesquioxane nanoparticles at various pH values was studied by surface plasmon resonance.  相似文献   

15.
Charge build-up at the solid/aqueous interface is a ubiquitous phenomenon that determines the properties of interfacial electrical double layers. Due to its unique properties, the surface of diamond offers an attractive platform to investigate charging mechanisms in aqueous solutions. We investigate the surface charge by studying the ion sensitivity of H-terminated single crystalline diamond surface conductive layers. The effect of monovalent and divalent salts has been probed at different pH values. For a pH above 3.5, increasing the ionic strength results in a decrease of the surface conductivity, in contrast to the results obtained for pH below 3.5. Electrokinetic experiments are in good agreement with the surface conductivity measurements, showing an isoelectric point at pH 3.5 for the H-terminated diamond surface. We discuss the results in terms of the Coulombic screening by electrolyte ions of the surface potential, which is induced by a pH-dependent surface charge. The origin of this surface charge is discussed in terms of charge regulation by amphoteric hydroxyl surface groups and unsymmetrical adsorption of hydroxide and hydronium ions induced by the hydrophobic nature of the H-terminated diamond surface. This surface charge can have important consequences for processes governed by the diamond/aqueous interface, such as electron transfer to charged redox molecules, adsorption of charged molecules and proteins, and ion sensitivity.  相似文献   

16.
We report the direct covalent functionalization of silicon and diamond surfaces with short ethylene glycol (EG) oligomers via photochemical reaction of the hydrogen-terminated surfaces with terminal vinyl groups of the oligomers, and the use of these monolayers to control protein binding at surfaces. Photochemical modification of Si(111) and polycrystalline diamond surfaces produces EG monolayers linked via Si-C bond formation (silicon) or C-C bond formation (diamond). X-ray photoelectron spectroscopy was used to characterize the monolayer composition. Measurements using fluorescently labeled proteins show that the EG-functionalized surfaces effectively resist nonspecific adsorption of proteins. Additionally, we demonstrate the use of mixed monolayers on silicon and diamond and apply these surfaces to control specific versus nonspecific binding to optimize a model protein sensing assay.  相似文献   

17.
The interaction of proteins with semiconductors such as silicon and diamond is of great interest for applications such as electronic biosensing. We have investigated the use of covalently bound oligo(ethylene glycol), EG, monolayers on diamond and silicon to minimize nonspecific protein adsorption. Protein adsorption was monitored by fluorescence scanning as a function of the length of the ethylene glycol chain (EG3 through EG6) and the terminal functional group (methyl- versus hydroxyl-terminated EG3 monolayer). More quantitative measurements were made by eluting adsorbed avidin from the surface and measuring the intensity of fluorescence in the solution. The attachment chemistry of the tri(ethylene glycol) molecules and monolayer orientation was studied by X-ray photoelectron spectroscopy. Improvement in the selectivity of surfaces modified with EG functionality was demonstrated in two model biosensing assays. We find that high-quality EG monolayers are formed on silicon and diamond and that these EG3 monolayers are as effective as EG3 self-assembled monolayers on gold at resisting nonspecific avidin adsorption. These results show promise for use of silicon and diamond materials in many potential applications such as biosensing and medical implants.  相似文献   

18.
Properties of hybridized deoxyribonucleic acid (DNA) arrays on single-crystalline undoped and boron-doped diamonds are studied at the microscopic level by atomic force microscopy (AFM) in buffered electrolytic solutions. DNA is linked to diamond via aminodecene molecules (TFAAD) that are attached to undoped diamonds by a photochemical reaction and via nitrophenyl-diazonium molecules attached electrochemically to boron-doped diamonds. Both H-terminated and oxidized diamond surfaces are used in this process. On H-terminated surfaces, AFM measurements detect compact DNA layers. By analyzing phase and height contrast in AFM, a DNA layer height of 76 A is determined on the photochemically functionalized diamonds and a DNA layer height of up to 92 A is determined on the electrochemically functionalized diamonds. Based on the layer thickness, the DNA chains are tilted under the angle of 31 degrees . The morphology of the DNA layers exhibits long-range (30-50 nm) undulations of 20 A in height and a nanoroughness of 8 A. Using Hertz's model for calculating the contact area of the AFM tip on a DNA layer and a geometrical model of DNA arrangement on diamond yields the DNA density on diamonds of 6 x 10(12) cm(-2) on both photochemically and electrochemically functionalized diamonds. The structure of these dense DNA layers is not significantly influenced by variations in buffer salinity of 1-300 mM NaCl. DNA molecules can be removed from the diamond surface by contact-mode AFM with forces >or= 45 nN and >or= 76 nN on photochemically and electrochemically functionalized diamonds, respectively, indicating that DNA is bonded covalently and stronger on diamond than on gold substrates. The DNA arrangement and bonding strength are similar on oxidized diamond surfaces when using an electrochemical process. On oxidized surfaces after photochemical processing, DNA is bonded noncovalently as deduced from the removal force < 6 nN. The presence of hybridized DNA as well as the selective removal of DNA by AFM scanning are corroborated by fluorescence microscopy.  相似文献   

19.
The influence of substrate surface preparation on diamond nucleation is a major topic in the investigation of CVD-diamond deposition. The substrate, polishing material, its grain size, and the resulting surface roughness all influence diamond nucleation. Diamond can nucleate at scratches or residues of the polishing process which are providing nucleation sites. In this paper the surface of molybdenum and substrates polished with SiC and diamond powder was studied by imaging (2- and 3-dimensional) secondary ion mass spectrometry. The distribution and grain size of polishing residues (SiC, diamond) were determined and the reaction of diamond with the substrate during heating to deposition temperature was investigated. In this case a laterally inhomogeneous system of carbon containing species had to be characterized. Therefore compound-specific secondary ion mass spectrometry had to be performed. The results suggested that diamond residues on molybdenum substrates are partly dissolved during the heat treatment. The measurements indicate that a fraction of the diamond residues is still present after heat treatment and can provide nucleation sites for diamond deposition.  相似文献   

20.
This paper compares the properties of self-assembled monolayers (SAMs) derived from octadecylisocyanide (ODI) and octadecanethiol (ODT) on polycrystalline Pt substrates. Both monolayers formed at a similar rate using 1.0 mM solutions in ethanol and achieved a thickness of 22-23 A after 24 h as determined by ellipsometry measurements. The advancing contact angles of ODI and ODT monolayers were found to be 113 and 117 degrees, respectively, suggesting a slight difference in structure between them. X-ray photoelectron spectroscopy revealed that SAMs of ODT were more stable than those of ODI, which was supported by experiments that probed desorption of these layers in prewarmed hexadecane. Cyclic voltammetry measurements indicated that both monolayer systems could diminish electron-transfer rates substantially, although ODT monolayers were more effective and robust than their ODI counterparts. The resistance of the SAMs to ion penetration differed in a similar way, and a microcontact-printed monolayer of ODT could protect the underlying Pt better in an HCl/Cl2-based etch process than the one formed from ODI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号