首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Virtual screening (VS) can be accomplished in either ligand- or structure-based methods. In recent times, an increasing number of 2D fingerprint and 3D shape similarity methods have been used in ligand-based VS. To evaluate the performance of these ligand-based methods, retrospective VS was performed on a tailored directory of useful decoys (DUD). The VS performances of 14 2D fingerprints and four 3D shape similarity methods were compared. The results revealed that 2D fingerprints ECFP_2 and FCFP_4 yielded better performance than the 3D Phase Shape methods. These ligand-based methods were also compared with structure-based methods, such as Glide docking and Prime molecular mechanics generalized Born surface area rescoring, which demonstrated that both 2D fingerprint and 3D shape similarity methods could yield higher enrichment during early retrieval of active compounds. The results demonstrated the superiority of ligand-based methods over the docking-based screening in terms of both speed and hit enrichment. Therefore, considering ligand-based methods first in any VS workflow would be a wise option.  相似文献   

2.
Poor performance of scoring functions is a well-known bottleneck in structure-based virtual screening (VS), which is most frequently manifested in the scoring functions' inability to discriminate between true ligands vs known nonbinders (therefore designated as binding decoys). This deficiency leads to a large number of false positive hits resulting from VS. We have hypothesized that filtering out or penalizing docking poses recognized as non-native (i.e., pose decoys) should improve the performance of VS in terms of improved identification of true binders. Using several concepts from the field of cheminformatics, we have developed a novel approach to identifying pose decoys from an ensemble of poses generated by computational docking procedures. We demonstrate that the use of target-specific pose (scoring) filter in combination with a physical force field-based scoring function (MedusaScore) leads to significant improvement of hit rates in VS studies for 12 of the 13 benchmark sets from the clustered version of the Database of Useful Decoys (DUD). This new hybrid scoring function outperforms several conventional structure-based scoring functions, including XSCORE::HMSCORE, ChemScore, PLP, and Chemgauss3, in 6 out of 13 data sets at early stage of VS (up 1% decoys of the screening database). We compare our hybrid method with several novel VS methods that were recently reported to have good performances on the same DUD data sets. We find that the retrieved ligands using our method are chemically more diverse in comparison with two ligand-based methods (FieldScreen and FLAP::LBX). We also compare our method with FLAP::RBLB, a high-performance VS method that also utilizes both the receptor and the cognate ligand structures. Interestingly, we find that the top ligands retrieved using our method are highly complementary to those retrieved using FLAP::RBLB, hinting effective directions for best VS applications. We suggest that this integrative VS approach combining cheminformatics and molecular mechanics methodologies may be applied to a broad variety of protein targets to improve the outcome of structure-based drug discovery studies.  相似文献   

3.
Ligand-based shape matching approaches have become established as important and popular virtual screening (VS) techniques. However, despite their relative success, many authors have discussed how best to choose the initial query compounds and which of their conformations should be used. Furthermore, it is increasingly the case that pharmaceutical companies have multiple ligands for a given target and these may bind in different ways to the same pocket. Conversely, a given ligand can sometimes bind to multiple targets, and this is clearly of great importance when considering drug side-effects. We recently introduced the notion of spherical harmonic-based "consensus shapes" to help deal with these questions. Here, we apply a consensus shape clustering approach to the 40 protein-ligand targets in the DUD data set using PARASURF/PARAFIT. Results from clustering show that in some cases the ligands for a given target are split into two subgroups which could suggest they bind to different subsites of the same target. In other cases, our clustering approach sometimes groups together ligands from different targets, and this suggests that those ligands could bind to the same targets. Hence spherical harmonic-based clustering can rapidly give cross-docking information while avoiding the expense of performing all-against-all docking calculations. We also report on the effect of the query conformation on the performance of shape-based screening of the DUD data set and the potential gain in screening performance by using consensus shapes calculated in different ways. We provide details of our analysis of shape-based screening using both PARASURF/PARAFIT and ROCS, and we compare the results obtained with shape-based and conventional docking approaches using MSSH/SHEF and GOLD. The utility of each type of query is analyzed using commonly reported statistics such as enrichment factors (EF) and receiver-operator-characteristic (ROC) plots as well as other early performance metrics.  相似文献   

4.
Benchmarks for molecular docking have historically focused on re-docking the cognate ligand of a well-determined protein-ligand complex to measure geometric pose prediction accuracy, and measurement of virtual screening performance has been focused on increasingly large and diverse sets of target protein structures, cognate ligands, and various types of decoy sets. Here, pose prediction is reported on the Astex Diverse set of 85 protein ligand complexes, and virtual screening performance is reported on the DUD set of 40 protein targets. In both cases, prepared structures of targets and ligands were provided by symposium organizers. The re-prepared data sets yielded results not significantly different than previous reports of Surflex-Dock on the two benchmarks. Minor changes to protein coordinates resulting from complex pre-optimization had large effects on observed performance, highlighting the limitations of cognate ligand re-docking for pose prediction assessment. Docking protocols developed for cross-docking, which address protein flexibility and produce discrete families of predicted poses, produced substantially better performance for pose prediction. Performance on virtual screening performance was shown to benefit by employing and combining multiple screening methods: docking, 2D molecular similarity, and 3D molecular similarity. In addition, use of multiple protein conformations significantly improved screening enrichment.  相似文献   

5.
FieldScreen, a ligand-based Virtual Screening (VS) method, is described. Its use of 3D molecular fields makes it particularly suitable for scaffold hopping, and we have rigorously validated it for this purpose using a clustered version of the Directory of Useful Decoys (DUD). Using thirteen pharmaceutically relevant targets, we demonstrate that FieldScreen produces superior early chemotype enrichments, compared to DOCK. Additionally, hits retrieved by FieldScreen are consistently lower in molecular weight than those retrieved by docking. Where no X-ray protein structures are available, FieldScreen searches are more robust than docking into homology models or apo structures.  相似文献   

6.
We developed a novel approach called SHAFTS (SHApe-FeaTure Similarity) for 3D molecular similarity calculation and ligand-based virtual screening. SHAFTS adopts a hybrid similarity metric combined with molecular shape and colored (labeled) chemistry groups annotated by pharmacophore features for 3D similarity calculation and ranking, which is designed to integrate the strength of pharmacophore matching and volumetric overlay approaches. A feature triplet hashing method is used for fast molecular alignment poses enumeration, and the optimal superposition between the target and the query molecules can be prioritized by calculating corresponding "hybrid similarities". SHAFTS is suitable for large-scale virtual screening with single or multiple bioactive compounds as the query "templates" regardless of whether corresponding experimentally determined conformations are available. Two public test sets (DUD and Jain's sets) including active and decoy molecules from a panel of useful drug targets were adopted to evaluate the virtual screening performance. SHAFTS outperformed several other widely used virtual screening methods in terms of enrichment of known active compounds as well as novel chemotypes, thereby indicating its robustness in hit compounds identification and potential of scaffold hopping in virtual screening.  相似文献   

7.
In this review, we discuss a number of computational methods that have been developed or adapted for molecule classification and virtual screening (VS) of compound databases. In particular, we focus on approaches that are complementary to high-throughput screening (HTS). The discussion is limited to VS methods that operate at the small molecular level, which is often called ligand-based VS (LBVS), and does not take into account docking algorithms or other structure-based screening tools. We describe areas that greatly benefit from combining virtual and biological screening and discuss computational methods that are most suitable to contribute to the integration of screening technologies. Relevant approaches range from established methods such as clustering or similarity searching to techniques that have only recently been introduced for LBVS applications such as statistical methods or support vector machines. Finally, we discuss a number of representative applications at the interface between VS and HTS.  相似文献   

8.
Polypharmacology has emerged as a new theme in drug discovery. In this paper, we studied polypharmacology using a ligand-based target fishing (LBTF) protocol. To implement the protocol, we first generated a chemogenomic database that links individual protein targets with a specified set of drugs or target representatives. Target profiles were then generated for a given query molecule by computing maximal shape/chemistry overlap between the query molecule and the drug sets assigned to each protein target. The overlap was computed using the program ROCS (Rapid Overlay of Chemical Structures). We validated this approach using the Directory of Useful Decoys (DUD). DUD contains 2950 active compounds, each with 36 property-matched decoys, against 40 protein targets. We chose a set of known drugs to represent each DUD target, and we carried out ligand-based virtual screens using data sets of DUD actives seeded into DUD decoys for each target. We computed Receiver Operator Characteristic (ROC) curves and associated area under the curve (AUC) values. For the majority of targets studied, the AUC values were significantly better than for the case of a random selection of compounds. In a second test, the method successfully identified off-targets for drugs such as rimantadine, propranolol, and domperidone that were consistent with those identified by recent experiments. The results from our ROCS-based target fishing approach are promising and have potential application in drug repurposing for single and multiple targets, identifying targets for orphan compounds, and adverse effect prediction.  相似文献   

9.
Virtual screening benchmarking studies were carried out on 11 targets to evaluate the performance of three commonly used approaches: 2D ligand similarity (Daylight, TOPOSIM), 3D ligand similarity (SQW, ROCS), and protein structure-based docking (FLOG, FRED, Glide). Active and decoy compound sets were assembled from both the MDDR and the Merck compound databases. Averaged over multiple targets, ligand-based methods outperformed docking algorithms. This was true for 3D ligand-based methods only when chemical typing was included. Using mean enrichment factor as a performance metric, Glide appears to be the best docking method among the three with FRED a close second. Results for all virtual screening methods are database dependent and can vary greatly for particular targets.  相似文献   

10.
Inhibition of amyloid fibril formation by stabilization of the native form of the protein transthyretin (TTR) is a viable approach for the treatment of familial amyloid polyneuropathy that has been gaining momentum in the field of amyloid research. The TTR stabilizer molecules discovered to date have shown efficacy at inhibiting fibrilization in vitro but display impairing issues of solubility, affinity for TTR in the blood plasma and/or adverse effects. In this study we present a benchmark of four protein- and ligand-based virtual screening (VS) methods for identifying novel TTR stabilizers: (i) two-dimensional (2D) similarity searches with chemical hashed, pharmacophore, and UNITY fingerprints, (ii) 3D searches based on shape, chemical, and electrostatic similarity, (iii) LigMatch, a new ligand-based method which uses multiple templates and combines 3D geometric hashing with a 2D preselection process, and (iv) molecular docking to consensus X-ray crystal structures of TTR. We illustrate the potential of the best-performing VS protocols to retrieve promising new leads by ranking a tailored library of 2.3 million commercially available compounds. Our predictions show that the top-scoring molecules possess distinctive features from the known TTR binders, holding better solubility, fraction of halogen atoms, and binding affinity profiles. To the best of our knowledge, this is the first attempt to rationalize the utilization of a large battery of in silico screening techniques toward the identification of a new generation of TTR amyloid inhibitors.  相似文献   

11.
Traditional drug development is a slow and costly process that leads to the production of new drugs. Virtual screening (VS) is a computational procedure that measures the similarity of molecules as one of its primary tasks. Many techniques for capturing the biological similarity between a test compound and a known target ligand have been established in ligand-based virtual screens (LBVSs). However, despite the good performances of the above methods compared to their predecessors, especially when dealing with molecules that have structurally homogenous active elements, they are not satisfied when dealing with molecules that are structurally heterogeneous. The main aim of this study is to improve the performance of similarity searching, especially with molecules that are structurally heterogeneous. The Siamese network will be used due to its capability to deal with complicated data samples in many fields. The Siamese multi-layer perceptron architecture will be enhanced by using two similarity distance layers with one fused layer, then multiple layers will be added after the fusion layer, and then the nodes of the model that contribute less or nothing during inference according to their signal-to-noise ratio values will be pruned. Several benchmark datasets will be used, which are: the MDL Drug Data Report (MDDR-DS1, MDDR-DS2, and MDDR-DS3), the Maximum Unbiased Validation (MUV), and the Directory of Useful Decoys (DUD). The results show the outperformance of the proposed method on standard Tanimoto coefficient (TAN) and other methods. Additionally, it is possible to reduce the number of nodes in the Siamese multilayer perceptron model while still keeping the effectiveness of recall on the same level.  相似文献   

12.
A graphical user interface (GUI) for our previously published virtual screening (VS) and data management platform VSDMIP (Gil-Redondo et al. J Comput Aided Mol Design, 23:171–184, 2009) that has been developed as a plugin for the popular molecular visualization program PyMOL is presented. In addition, a ligand-based VS module (LBVS) has been implemented that complements the already existing structure-based VS (SBVS) module and can be used in those cases where the receptor’s 3D structure is not known or for pre-filtering purposes. This updated version of VSDMIP is placed in the context of similar available software and its LBVS and SBVS capabilities are tested here on a reduced set of the Directory of Useful Decoys database. Comparison of results from both approaches confirms the trend found in previous studies that LBVS outperforms SBVS. We also show that by combining LBVS and SBVS, and using a cluster of ~100 modern processors, it is possible to perform complete VS studies of several million molecules in less than a month. As the main processes in VSDMIP are 100% scalable, more powerful processors and larger clusters would notably decrease this time span. The plugin is distributed under an academic license upon request from the authors.  相似文献   

13.
Inductive bias is the set of assumptions that a person or procedure makes in making a prediction based on data. Different methods for ligand-based predictive modeling have different inductive biases, with a particularly sharp contrast between 2D and 3D similarity methods. A unique aspect of ligand design is that the data that exist to test methodology have been largely man-made, and that this process of design involves prediction. By analyzing the molecular similarities of known drugs, we show that the inductive bias of the historic drug discovery process has a very strong 2D bias. In studying the performance of ligand-based modeling methods, it is critical to account for this issue in dataset preparation, use of computational controls, and in the interpretation of results. We propose specific strategies to explicitly address the problems posed by inductive bias considerations.  相似文献   

14.
The recent literature is replete with papers evaluating computational tools (often those operating on 3D structures) for their performance in a certain set of tasks. Most commonly these papers compare a number of docking tools for their performance in cognate re-docking (pose prediction) and/or virtual screening. Related papers have been published on ligand-based tools: pose prediction by conformer generators and virtual screening using a variety of ligand-based approaches. The reliability of these comparisons is critically affected by a number of factors usually ignored by the authors, including bias in the datasets used in virtual screening, the metrics used to assess performance in virtual screening and pose prediction and errors in crystal structures used.  相似文献   

15.
Ligand promiscuity, which is now recognized as an extremely common phenomenon, is a major underlying cause of drug toxicity. We have developed a new reverse virtual screening (VS) method called ReverseScreen3D, which can be used to predict the potential protein targets of a query compound of interest. The method uses a 2D fingerprint-based method to select a ligand template from each unique binding site of each protein within a target database. The target database contains only the structurally determined bioactive conformations of known ligands. The 2D comparison is followed by a 3D structural comparison to the selected query ligand using a geometric matching method, in order to prioritize each target binding site in the database. We have evaluated the performance of the ReverseScreen2D and 3D methods using a diverse set of small molecule protein inhibitors known to have multiple targets, and have shown that they are able to provide a highly significant enrichment of true targets in the database. Furthermore, we have shown that the 3D structural comparison improves early enrichment when compared with the 2D method alone, and that the 3D method performs well even in the absence of 2D similarity to the template ligands. By carrying out further experimental screening on the prioritized list of targets, it may be possible to determine the potential targets of a new compound or determine the off-targets of an existing drug. The ReverseScreen3D method has been incorporated into a Web server, which is freely available at http://www.modelling.leeds.ac.uk/ReverseScreen3D .  相似文献   

16.
Molecular similarity methods for ligand-based virtual screening (VS) generally do not take compound potency as a variable or search parameter into account. We have incorporated a logarithmic potency scaling function into two conceptually distinct VS algorithms to account for relative compound potency during search calculations. A high-throughput screening (HTS) data set containing cathepsin B inhibitors was analyzed to evaluate the effects of potency scaling. Sets of template compounds were randomly selected from the HTS data and used to search for hits having varying potency levels in the presence or absence of potency scaling. Enrichment of potent compounds in small subsets of the HTS data set was observed as a consequence of potency scaling. In part, observed enrichments could be rationalized as a result of recentering chemical reference space on a subspace populated by potent compounds. Our findings suggest that VS calculations using multiple reference compounds can be directed toward the preferential detection of potent database hits by scaling compound contributions according to potency differences.  相似文献   

17.
We present ElectroShape, a novel ligand-based virtual screening method, that combines shape and electrostatic information into a single, unified framework. Building on the ultra-fast shape recognition (USR) approach for fast non-superpositional shape-based virtual screening, it extends the method by representing partial charge information as a fourth dimension. It also incorporates the chiral shape recognition (CSR) method, which distinguishes enantiomers. It has been validated using release 2 of the Directory of useful decoys (DUD), and shows a near doubling in enrichment ratio at 1% over USR and CSR, and improvements as measured by Receiver Operating Characteristic curves. These improvements persisted even after taking into account the chemotype redundancy in the sets of active ligands in DUD. During the course of its development, ElectroShape revealed a difference in the charge allocation of the DUD ligand and decoy sets, leading to several new versions of DUD being generated as a result. ElectroShape provides a significant addition to the family of ultra-fast ligand-based virtual screening methods, and its higher-dimensional shape recognition approach has great potential for extension and generalisation.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号