首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a previous work, Optics Communications 284 (2011) 2460-2465, we considered a dielectric medium with an anti-reflection coating and a spatially uniform index of refraction illuminated at normal incidence by a quasimonochromatic field. Using the continuity equations for the electromagnetic energy density and the Gordon momentum density, we constructed a traceless, symmetric energy-momentum tensor for the closed system. In this work, we relax the condition of a uniform index of refraction and consider a dielectric medium with a spatially varying index of refraction that is independent of time, which essentially represents a mechanically rigid dielectric medium due to external constraints. Using continuity equations for energy density and for Gordon momentum density, we construct a symmetric energy-momentum matrix, whose four-divergence is equal to a generalized Helmholtz force density four-vector. Assuming that the energy-momentum matrix has tensor transformation properties under a symmetry group of space-time coordinate transformations, we derive the global conservation laws for the total energy, momentum, and angular momentum.  相似文献   

2.
3.
电磁能量-动量转化和守恒定律四维形式的一种推导   总被引:1,自引:0,他引:1  
定义了电磁场的四维动量流密度张量,并将电磁能量转化和守恒定律及动量转化和守恒定律写成了四维协变形式,给出了三维电磁能量密度、能流密度、动量密度和动量流密度关于两个惯性系之间的变换关系,还给出了四维动量流密度张量与四维电磁场张量之间的依赖关系。  相似文献   

4.
We develop the theory of interaction of the electromagnetic field and a single atom being in an arbitrary state and having an arbitrary direction of the angular momentum of the atomic electron with respect to the direction of the field polarization vector. It is shown that the atom response current has a tensor structure and depends on both the direction of the angular momentum of the atom, and the polarization vector of the external field. The tensor character of the response is determined by the externally induced anisotropic distribution of the probability density of spatial localization of the atomic electron. It is shown that the induced-anisotropy effects clarify the harmonic generation mechanism at play during the non-resonance interaction of laser radiation with atomic media. The developed theory is applied to the analysis of the problem about the generation of terahertz waves in a two-color laser field. It is shown that the change in the mutual orientation of wave polarization vectors leads to a significant increase in the efficiency of conversion of high-frequency fields to low-frequency ones. It is shown for the first time that the generation of terahertz waves is possible in the preionization regime, when the generation mechanism is related to atomic nonlinearity.  相似文献   

5.
We report on the first quantitative test of acoustic orbital angular momentum transfer to a sound absorbing object immersed in a viscous liquid. This is done by realizing an original experiment that is to spin a millimeter-size target disk using an ultrasonic vortex beam. We demonstrate the balance between the acoustic radiation torque calculated from the Brillouin stress tensor and the viscous torque evaluated from the steady state spinning frequency. Moreover, we unveil a rotational acoustic streaming phenomenon that results from the acoustic angular momentum transfer to the host fluid. We show that it lowers the viscous torque, thereby restoring the torque balance.  相似文献   

6.
We develop spin matrices for a classical gravitational field in the linearized theory which satisfy angular-momentum commutation relations and are appropriate for a spin angular momentum of two. The same spin matrices come out of a decomposition of the angular momentum density of the linearized gravitational field into orbital and spin parts, similar to that carried out by Humblet for the electromagnetic field. To achieve this decomposition, we use the momentum density for the gravitational field obtained from the Landau-Lifshitz pseudo-tensor in the weak gravity limit. We note a formal connection between the spin angular momenta of gravitational and electromagnetic fields using the Kaluza-Klein idea.  相似文献   

7.
The total momentum of a thermodynamically closed system is unique, as is the total energy. Nevertheless, there is continuing confusion concerning the correct form of the momentum and the energy–momentum tensor for an electromagnetic field interacting with a linear dielectric medium. Rather than construct a total momentum from the Abraham momentum or the Minkowski momentum, we define a thermodynamically closed system consisting of a propagating electromagnetic field and a negligibly reflecting dielectric and we identify the Gordon momentum as the conserved total momentum by the fact that it is invariant in time. In the formalism of classical continuum electrodynamics, the Gordon momentum is therefore the unique representation of the total momentum in terms of the macroscopic electromagnetic fields and the macroscopic refractive index that characterizes the material. We also construct continuity equations for the energy and the Gordon momentum, noting that a time variable transformation is necessary to write the continuity equations in terms of the densities of conserved quantities. Finally, we use the continuity equations and the time–coordinate transformation to construct an array that has the properties of a traceless, symmetric energy–momentum tensor.  相似文献   

8.
旋转带电体和电磁场的角动量守恒定律及能量守恒定律   总被引:4,自引:0,他引:4  
对均匀带电薄球壳匀加带旋转问题,由电磁场的角动量定恒守律和能量守恒定律两种方法分别得出了外力矩力其功率的正确正确结果。  相似文献   

9.
The radiation pressure is studied by means of the tensor of time-averaged stresses arising in plasma under the effect of a magnetostatic and an oscillating field. It is proved that the radiation pressure need not arise on the plasma-vacuum boundary even if the electromagnetic wave falling from vacuum is reflected substantially. The density of momentum flux defined by the stress tensor is compared with the density of the electromagnetic field momentum.The authors are indebted to K. Jungwirth CSc., A. B. Mikhaylovskiy DrSc. and to the theoretical staff of the Institute for reviewing the results.  相似文献   

10.
Osamu Yamashita 《Optics Communications》2012,285(13-14):3061-3065
We calculate the intrinsic spin and extrinsic orbital angular momentum densities of an electromagnetic plane wave propagating in a helically wound optical fiber. The geometrical phase shift of the extrinsic angular momentum density of light traveling in such a fiber is derived analytically and discussed in comparison with that of the intrinsic angular momentum density.  相似文献   

11.
A theory of the nonresonant response of a single atom in a state with arbitrary magnitude and direction of the angular momentum of an atomic electron with respect to the polarization vector of the acting electromagnetic field has been developed. It has been shown that the atomic response current has a tensor structure and depends both on the direction of the angular momentum of the atom and on the polarization vector of the external field. The tensor character of the response is due to the effects of the anisotropy of probability density distribution of the atomic electron as compared to the case of the free atom. The selection rules for the axisymmetric problem of the atom in the field have been analyzed. The manifestation of the selection rules in the angular spectra of photoelectrons has been demonstrated. The probability of the ionization of the atom has been analyzed as a function of the amplitude and duration of the pulse. It has been shown that the width of the generation spectrum is a nonlinear function of the field strength and is saturated in the region of nearly atomic fields. Methods for controlling the parameters of the atomic response spectrum have been proposed on the basis of the use of a sequence of laser pulses with various time profiles, carrier frequencies, and polarization states. It has been shown that the generation of terahertz radiation is possible in the preionization regime, where the generation mechanism is attributed to atomic nonlinearity.  相似文献   

12.
The spin force operator on a non-relativistic Dirac oscillator (in the non-relativistic limit the Dirac oscillator is a spin one-half 3D harmonic oscillator with strong spin–orbit interaction) is derived using the Heisenberg equations of motion and is seen to be formally similar to the force by the electromagnetic field on a moving charged particle. When confined to a sphere of radius R, it is shown that the Hamiltonian of this non-relativistic oscillator can be expressed as a mere kinetic energy operator with an anomalous part. As a result, the power by the spin force and torque operators in this case are seen to vanish. The spin force operator on the sphere is calculated explicitly and its torque is shown to be equal to the rate of change of the kinetic orbital angular momentum operator, again with an anomalous part. This, along with the conservation of the total angular momentum, suggests that the spin force exerts a spin-dependent torque on the kinetic orbital angular momentum operator in order to conserve total angular momentum. The presence of an anomalous spin part in the kinetic orbital angular momentum operator gives rise to an oscillatory behavior similar to the Zitterbewegung. It is suggested that the underlying physics that gives rise to the spin force and the Zitterbewegung is one and the same in NRDO and in systems that manifest spin Hall effect.  相似文献   

13.
We analyse the “Einstein box” thought experiment and the definition of the momentum of light inside matter. We stress the importance of the total energy-momentum tensor of the closed system (electromagnetic field plus material medium) and derive in detail the relativistic expressions for the Abraham and Minkowski momenta, together with the corresponding balance equations for an isotropic and homogeneous medium. We identify some assumptions hidden in the Einstein box argument, which make it weaker than it is usually recognized. In particular, we show that the Abraham momentum is not uniquely selected as the momentum of light in this case.  相似文献   

14.
张洪宪  赵珩 《光子学报》2008,37(8):1679-1683
从傍轴条件下光束轨道角动量的基本理论出发,根据高阶椭圆厄密–高斯光束的光场分布,运用张量方法,对高阶椭圆厄密-高斯光束轨道角动量的密度分布进行了理论分析,得到了求解该密度分布的计算公式,并在给定参量条件下作了数值模拟.进一步对光束中每个光子携带的平均轨道角动量进行了计算,发现其值随着椭圆厄密-高斯光束阶次的增大而增大,表明高阶椭圆厄密-高斯光束能够比椭圆高斯光束或拉盖尔-高斯光束提供高得多的轨道角动量.  相似文献   

15.
We defend a natural division of the energy density, energy flux and momentum density of electromagnetic waves in linear media in electromagnetic and material parts. In this division, the electromagnetic part of these quantities have the same form as in vacuum when written in terms of the macroscopic electric and magnetic fields, the material momentum is calculated directly from the Lorentz force that acts on the charges of the medium, the material energy is the sum of the kinetic and potential energies of the charges of the medium and the material energy flux results from the interaction of the electric field with the magnetized medium. We present reasonable models for linear dispersive non-absorptive dielectric and magnetic media that agree with this division. We also argue that the electromagnetic momentum of our division can be associated with the electromagnetic relativistic momentum, inspired on the recent work of Barnett [Phys. Rev. Lett. 104 (2010) 070401] that showed that the Abraham momentum is associated with the kinetic momentum and the Minkowski momentum is associated with the canonical momentum.  相似文献   

16.
We describe an apparatus that can measure the instantaneous angular displacement and torque applied to a quartz particle which is angularly trapped. Torque is measured by detecting the change in angular momentum of the transmitted trap beam. The rotational Brownian motion of the trapped particle and its power spectral density are used to determine the angular trap stiffness. The apparatus features a feedback control that clamps torque or other rotational quantities. The torque sensitivity demonstrated is ideal for the study of known biological molecular motors.  相似文献   

17.
《Comptes Rendus Physique》2017,18(2):137-143
Electromagnetic waves could carry orbital angular momentum. Such momentum can be transferred to macroscopic objects and can make them rotate under a constant torque. Based on experimental observations, we investigate the origin of orbital angular momentum and energy transfer. Due to angular momentum and energy conservation, we show that angular momentum transfer is due to the change in the sign of angular momentum upon reflection. This leads to a rotational Doppler shift of the electromagnetic wave frequency, ensuring energy conservation.  相似文献   

18.
The Gaussian vortex beam is assumed to be linearly polarized.The analytical expression of the electric field of a linearly polarized Gaussian vortex beam propagating in free space is derived by using the vectorial Rayleigh-Sommerfeld integral formulae.The propagating magnetic field of the linearly polarized Gaussian vortex beam is presented by taking the curl of the electric field.By employing the electromagnetic field of the linearly polarized Gaussian vortex beam beyond the paraxial approximation,the analytical expression of the angular momentum density of the linearly polarized Gaussian vortex beam is derived.The three components of the angular momentum density of a linearly polarized Gaussian vortex beam are demonstrated in the reference plane.The effects of the linearly polarized angle and the topological charge on the three components of the angular momentum density are investigated.To acquire the more longitudinal angular momentum density requires such an optimal choice that the linearly polarized angle is set to be zero and the topological charge increases.This research is useful to the optical trapping,the optical guiding,and the optical manipulation.  相似文献   

19.
When the effects of dispersion are included, neither the Abraham nor the Minkowski expression for electromagnetic momentum in a dielectric medium gives the correct recoil momentum for absorbers or emitters of radiation. The total momentum density associated with a field in a dielectric medium has three contributions: (i) the Abraham momentum density of the field, (ii) the momentum density associated with the Abraham force, and (iii) a momentum density arising from the dispersive part of the response of the medium to the field, the latter having a form evidently first derived by Nelson (1991) [8]. All three contributions are required for momentum conservation in the recoil of an absorber or emitter in a dielectric medium. We consider the momentum exchanged and the force on a polarizable particle (e.g., an atom or a small dielectric sphere) in a host dielectric when a pulse of light is incident upon it, including the dispersion of the dielectric medium as well as a dispersive component in the response of the particle to the field. The force can be greatly increased in slow-light dielectric media.  相似文献   

20.
J. Cohn  N. Hong 《Annals of Physics》1980,125(2):231-252
The energy-momentum and angular momentum emission rates for an arbitrarily moving charge (whose speed is less than that of light in the medium) in a uniform transparent medium are calculated in manifestly covariant form. The calculations are executed for three types of stress tensor: Minkowski, Abraham, and Marx. Among other things it is found that the energy-momentum emission rates for the latter two tensors are equal and differ from that of the former. Further, the angular momentum emission rates for all three tensors are found to be equal. Only for the Marx tensor is this rate independent of the orientation of the associated asymptotic space-like surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号