首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yb3+–Tm3+ codoped tellurite glasses containing silver nanoparticles (NPs) were synthesized and characterized using transmission electron microscopy and optical techniques. The samples’ composition and the nucleation of NPs were investigated using electron diffraction and energy dispersive spectroscopy. For the optical experiments, the samples were excited using a diode laser operating at 980 nm, in resonance with the Yb3+ transition 2F7/22F5/2. Photoluminescence (PL) bands corresponding to Tm3+ transitions were observed at 480, 650, and 800 nm due to the Yb3+→ Tm3+ energy transfer. PL enhancement was achieved by heat-treatment of the samples at 325°C during different time intervals. The growth of the PL bands correlates with the increase of the silver NPs concentration. The relevant mechanisms contributing for the PL characteristics are discussed.  相似文献   

2.
Nonlinear optical characteristics of copper and silver nanoparticles in glass host matrices are studied by the Z-scan method at the wavelength of a Nd:YAG laser (λ=1064 nm) in a field of picosecond pulses. It is found that the third-order nonlinear susceptibility is more pronounced in glasses with copper nanoparticles than in glasses with silver nanoparticles. On the basis of experimental data obtained for samples with copper nanoparticles synthesized by ion implantation, it is shown for the first time that the nonlinear absorption of laser radiation with a wavelength lying out of the plasmon resonance region can be caused by a two-photon effect in metal particles. The character of the optical limiting process in the samples with copper nanoparticles when two-photon absorption is involved is discussed.  相似文献   

3.
Tm3+/Yb3+ codoped tellurite glass has been prepared. Density, refractive index, optical absorption, Judd-Ofelt parameters and spontaneous transition probabilities of Tm3+ have been measured and calculated, respectively. Intense blue three-photon upconversion fluorescence and S-band (1470 nm) fluorescence were investigated under the excitation of a 980 nm diode laser at room temperature. Judd-Ofelt parameters, strong blue three-photon upcoversion emission of Tm3+ in glass indicate that Tm3+/Yb3+ codoped tellurite glass is a promising blue color upconversion optical and laser material. In addition, experiment results showed the 980 nm laser was more efficient than 808 nm laser when pumping Tm3+/Yb3+ codoped tellurite glass, Tm3+/Yb3+ codoped tellurite glass also could be a promising material for S-band amplification.  相似文献   

4.
The optical properties of silver species in various oxidation and aggregation states and of tin centers in melt-quenched phosphate glasses have been assessed by optical absorption and photoluminescence (PL) spectroscopy. Glasses containing silver and tin, or either dopant, were studied. Emission and excitation spectra along with time-resolved and temperature-dependent PL measurements were employed in elucidating the different emitting centers observed and investigating on their interactions. In regard to silver, the data suggests the presence of luminescent single Ag+ ions, Ag+-Ag+ and Ag+-Ag0 pairs, and nonluminescent Ag nanoparticles (NPs), where Ag+-Ag0→Ag+-Ag+ energy transfer is indicated. Tin optical centers appear as twofold-coordinated Sn centers displaying PL around 400 nm ascribed to triplet-to-singlet electronic transitions. The optically active silver centers were observed in glasses where 8 mol% of both Ag2O and SnO, and 4 mol% of Ag2O were added. Heat treatment (HT) of the glass with the high concentration of silver and tin leads to chemical reduction of ionic silver species resulting in a large volume fraction of silver NPs and the vanishing of silver PL features. Further characterization of such heat-treated glass by transmission electron microscopy and X-ray photoelectron spectroscopy appears consistent with silver being present mainly in nonoxidized form after HT. On the other hand, HT of the glass containing only silver results in the quenching of Ag+-Ag0 pairs emission that is ascribed to nonradiative energy transfer to Ag NPs due to the positioning of the pairs near the surface of NPs during HT. In this context, an important finding is that a faster relaxation was observed for this nanocomposite in relation to a heat-treated glass containing both silver and tin (no silver pairs) as revealed by degenerate four-wave mixing spectroscopy. Such result is attributed to Ag NP→Ag+-Ag0 plasmon resonance energy transfer. The data thus indicates that energy transfer between Ag+-Ag0 pairs and NPs is bi-directional.  相似文献   

5.
掺铒铋酸盐玻璃的光谱性质研究   总被引:12,自引:12,他引:0  
杨建虎  戴世勋  温磊  胡丽丽  姜中宏 《光子学报》2002,31(11):1382-1386
研究了掺铒铋酸盐玻璃的吸收和荧光光谱性质,应用Judd-Ofelt理论计算了玻璃的三个强度参量Ωt=(t=2,4,6),分别为Ω2=3.71×10-20cm24=1.86×10-20cm26=1.28×10-20cm2,计算了Er3+离子的自发跃迁几率、荧光分支比等光谱参量.经荧光谱测试发现掺Er3+铋酸盐玻璃的荧光半高宽可达70nm.应用McCumber理论计算1.53μm处的受激发射截面可达9×10-21cm2.对Er3+离子在不同基质玻璃中光谱特性的比较发现,Er3+在铋酸盐玻璃中具有相对较高的受激发射截面和宽的荧光半高宽.  相似文献   

6.
The formation of silver nanoparticles in 60GeO2–20PbO–20Na2O bulk glass doped with 0.15 wt% of Ag has been studied by optical methods in the near ultraviolet-to-near infrared and mid-infrared ranges. A clear optical absorption band, which grows when increasing the annealing temperature, is observed around 460 nm, as a consequence of the surface plasmon resonance in the Ag nanoparticles. From the simultaneous analysis of optical transmittance and spectroscopic ellipsometry spectra in the near ultraviolet-to-near infrared range, it is demonstrated that the nanoparticles are surprisingly formed only in a thin layer (some tens of nm thick) underneath the sample surfaces. The potential of such a simultaneous optical analysis for determining the localization of the nanoparticles in glasses of any nature is underlined. Based on the results of a complementary mid-infrared spectroscopy characterization, the processes involved in silver migration to the surfaces and further aggregation to form nanoparticles are discussed.  相似文献   

7.
Tm3+-doped oxide-chloride germanate and tellurite glasses have been synthesized by conventional melting method. Intense up-conversion luminescence emissions were simultaneously observed at room temperature in these glasses. The possible up-conversion mechanisms are discussed and estimated. However, in these Tm3+-doped glasses, tellurite glass showed weaker up-conversion emissions than germanate glass, which is inconsistent with the prediction from the difference of maximum phonon energy between tellurite and germanate glasses. In this paper, Raman spectroscopy was employed to investigate the origin of the difference in up-conversion luminescence in the two glasses. Our results confirm that, besides the maximum phonon energy, the phonon density of host glasses is also an important factor in determining the up-conversion efficiency.  相似文献   

8.
制备了高折射率Tm3+/Yb3+共掺杂铋碲酸盐玻璃,利用棱镜耦合法测量出玻璃在632.8和1550nm波长处的折射率分别为2.0365和1.9795. 对玻璃的吸收、荧光和红外透过光谱展开了测试与分析,根据Judd-Ofelt理论对吸收光谱进行拟合,求得Tm3+的振子强度参数Ωt(t=2,4,6)分别为3.90×10-20, 2.03×10-20和9.03×10-2 关键词: 3+/Yb3+共掺')" href="#">Tm3+/Yb3+共掺 铋碲酸盐玻璃 光谱参数 上转换荧光  相似文献   

9.
Thermal stability, Raman spectra and blue upconversion luminescence properties of Tm3+/Yb3+-codoped halide modified tellurite glasses have been studied. The results showed that the mixed halide modified tellurite glass (TFCB) has the best thermal stability, the lowest phonon energies and the strongest upconversion emissions. The effect of halide on upconversion intensity is observed and discussed and possible upconversion mechanisms are evaluated. The intense blue upconversion luminescence of Tm3+ in TFCB glass may be a potentially useful material for developing upconversion optical devices.  相似文献   

10.
Er掺杂的亚碲酸盐玻璃具有很好的上转换性质,加入氟化物在干燥的气氛下可以制备低OH-根含量的氟氧化物玻璃,同样组分在湿润的气氛下,仍有较高的OH-根含量.通过傅里叶红外吸收光谱、荧光衰减曲线及上转换光谱研究了在干燥和湿润气氛下,亚碲酸盐氟氧化物玻璃的OH-含量,以及对上转换发光的影响.在干燥的气氛下制备的亚碲酸盐玻璃的OH-浓度为0.017×1020cm-3是湿润的气氛下制备玻璃中的1/15,其543nm绿光上转换效率增加了2.4倍.  相似文献   

11.
Silver nanoparticles have been formed on the surface of lead crystal glass by means of (i) ion-exchange of alkaline ions from the glass by Ag+ ions from a molten salts bath, and (ii) silica based sol-gel coatings containing silver. All experimental variables concerning both ion-exchange process and sol-gel coatings application were combined and studied as main parameters governing the reduction of Ag+ ions to Ag0 atoms and further aggregation to form nanosized colloids. The content of thermoreducing agents (arsenic or antimony oxides) in the lead crystal glass was essential to favour the reduction of silver ions to form nanoparticles. Optimal experimental conditions to be used for the obtaining of surface silver nanoparticles were determined. TEM was used as the principal characterisation technique for direct observation of the nanoparticles generated. The size of silver colloids varied in the 20-300 nm range for ion-exchanged samples and in the 10-80 nm range for sol-gel coated samples.  相似文献   

12.
The effect of silver on the optical, spectral-luminescent, and crystallization properties of bromide photo-thermo-refractive glasses is studied. Multicomponent photosensitive glasses of the Na2O–ZnO–Al2O3–SiO2 system with photosensitizing agents (cerium, antimony, silver) and halogenides (fluorine and bromine) are synthesized. Ultraviolet irradiation and thermal treatment below the glass-transition temperature of the glasses cause the formation of silver molecular clusters, which exhibit luminescence in the visible and infrared regions. UV irradiation and thermal treatment of glasses above the glass-transition temperature lead to the growth of silver nanoparticles with plasmon resonance peak in the region of 420 nm. Further thermal treatment of glasses above the glass-transition temperature shifts the plasmon-resonance maximum by 70 nm to longer wavelengths, which is related to the growth of a crystalline shell consisting of mixed silver and sodium bromides on nanoparticles. This formation of a crystalline phase on colloidal centers results in a local increase in the refractive index of the irradiated region by +Δn ~ 900 ppm compared to the nonirradiated region. Photo-thermo-refractive glasses with increased silver concentration are promising photosensitive materials for creating holographic optical elements and devices for line narrowing and stabilizing filters, spectral beam combiners, and filters for increasing the spectral brightness of laser diodes. A positive change in the refractive index of Photo-thermo-refractive glasses provides the possibility of recording in them 3D waveguide and integrated-optical structures.  相似文献   

13.
具有高机械强度的掺Er3+∶TeO2-Nb2O5玻璃的光谱性质研究   总被引:1,自引:1,他引:0  
熔制了掺铒碲铌玻璃样品(100-XTeO2-XNb2O5(X=5,10,15,20 mol%),测试了其密度、折射率、转变温度、析晶温度、维氏机械强度、吸收光谱、荧光光谱、荧光寿命等参量。利用Judd-Ofelt和McCumber理论分别计算了铒离子强度参量Ωt (t=2, 4, 6)和受激发射截面σemi的大小,研究了掺铒碲铌玻璃样品光谱参量对Nb2O5成分的依赖性,并与典型的碲锌钠玻璃(75TeO2-20ZnO-5Na2O)在热学、机械强度、光谱性质和放大品行四个方面进行了比较.  相似文献   

14.
The stimulated emission cross-section σ and fluorescence lifetime for the 1.06 μm emission (4F3/24I1/12) have been measured for a number of Nd-doped tellurite glasses. The measured value of σ ? 9 × 10-20 cm 2 for the tellurite glasses is to be compared with the value of 3.5 × 10-20 cm 2 for the ED-2 glass. Based on the measured spectroscopic parameters, an LED-pumped tellurite glass fiber laser is predicted to perform better than ED-2 glass, both in the longitudinal and transverse pumping configuration. The threshold for side-pumped tellurite glass laser can be comparable or even lower than that in Nd:YAG.  相似文献   

15.
The optical property and the magneto-optical response were space-selectively modified in transparent Fe3+- and Au3+-doped glasses by using infrared femtosecond- (fs-) laser irradiation and subsequent annealing. This irradiation process induces the precipitation of not only magnetic spinel-type Fe-oxide nanoparticles but also Au nanoparticles inside the glasses, which shows localized surface plasmon resonance absorption at the wavelengths larger than 500 nm. As the annealing time and the temperature increases, the position of the LSPR peaks exhibits red shifts, which is due to the growth of Au nanoparticles. Faraday rotation angles as a function of wavelength were measured, and the difference spectra exhibit distinct positive peaks, indicating that the coupling between the LSPR due to the Au nanoparticles and the diamagnetism of the matrix glass is effective. To decrease the coupling with the diamagnetic glass, a two-step annealing process (at 450 °C for 90 min and at 550 °C for 30 min) was carried out after irradiation with fs-laser. The preliminary annealing at the lower temperature contributes to the precipitation of ferrimagnetic magnetite nanoparticles. Au nanoparticles were subsequently grown by annealing at 550 °C. In this case, effective coupling between the LSPR and ferrimagnetic nanoparticles has significantly suppressed the intensity of the positive peak in the Faraday spectra compared with the single annealing process.  相似文献   

16.
Second-order optical susceptibilities were established in the optically poled erbium doped tellurite glasses near the melting temperature. The non-linear optical susceptibility was formed by bicolor coherent optical treatment performed by two coherent laser beams originated from 50 ps Nd-YAG laser (λ = 1.32 μm) exciting the high pressure hydrogen laser cell emitting at 1907 nm. The non-centrosymmetric grating of the medium was created by coherent superposition of the fundamental laser illumination at 1907 nm and the doubled frequency one at 953.5 nm. The maximally all-optically poled SHG occurs for 2% doped Er2O3 (in weighting units) TeO2-GeO2-PbO glass. It was found that the photoinduced SHG demonstrates a saturation during the photo-treatment of 9-10 min using the two beams polarized at angle about 45° between them. During the coherent bicolor optical treatment it was achieved the value of second-order susceptibility up to 3.6 pm/V at 1907 nm. The optimal ratio between the fundamental beam with power density about 1.1 GW/cm2 and writing doubled frequency seeding beam about 0.015 GW/cm2 corresponds to the maximal of photoinduced SHG. For glasses with lower concentration of Er2O3, the relaxation of the second-order optical susceptibility is substantially longer and achieves SHG value that corresponds to 80% of the maximal ones. It is necessary to emphasize that efficient optically-poled grating exists only within the narrow temperature range near the glassing temperature. Possible physical mechanisms of the phenomenon observed are discussed. Generally the used glasses possess better parameters than early investigated germinate glasses.  相似文献   

17.
Manganese nanoparticles were grown in silica glass and silica film on silicon substrate by annealing of the sol-gel prepared porous silicate matrices doped with manganese nitrate. Annealing of doped porous silicate matrices was performed at various conditions that allowed to obtain the nanocomposite glasses with various content of metallic Mn. TEM of Mn/SiO2 glass indicates the bimodal size distribution of Mn nanoparticles with mean sizes of 10.5 nm and 21 nm. The absorption and photoluminescence spectra of Mn/SiO2 glasses were measured. In the absorption spectra at 300 nm (4.13 eV) we observed the band attributed to the surface plasmon resonance in Mn nanoparticles. The spectra proved the creation of Mn2+ and Mn3+ ions in silica glass as well. The absorption spectra of Mn/SiO2 glasses annealed in air prove the creation of manganese oxide Mn2O3. The measured reflection spectra of Mn/SiO2 film manifest at 240-310 nm the peculiarity attributed to surface plasmons in Mn nanoparticles.  相似文献   

18.
The nonlinear optical response of silver and copper nanoparticles synthesized by ion implantation in silica glasses is studied in the near-ultraviolet spectral range at a wavelength of 354.7 nm. The real and imaginary parts of the third-order nonlinear susceptibility χ(3) of composite materials are measured. It is shown that the quantity Imχ(3) is due to saturated absorption, while Reχ(3) is due to the self-defocusing effect in composite materials.  相似文献   

19.
采用高温熔融法制备了单掺Tm3+和Tm3+/Ho3+共掺碲酸盐玻璃,测试了808 nm激光泵浦下玻璃的红外和上转换荧光光谱。Tm3+/Ho3+共掺碲酸盐玻璃上转换荧光光谱主要由695 nm红光、544 nm绿光、474 nm蓝光和740 nm红光四个发光带组成。通过分析样品的光谱性能和能量转换机制,发现很少报道的740 nm红光可能是由Tm3+:1D2 →3F2, 3能级跃迁产生的。在掺杂0.5 mol% Tm2O3的样品中添加0.3 mol% Ho2O3,695 nm红光、740 nm红光和474 nm蓝光等上转换发光强度明显增大,大约分别是单掺0.5 mol% Tm2O3样品中发光强度的3倍,2.5倍和14倍。这些情况说明存在着强烈的Ho3+→Tm3+反向能量传递。单掺Tm3+碲酸盐玻璃中1D2能级(发射740 nm红光)上的粒子集居主要来源于合作上转换(CU)过程,而3F2, 3能级(发射695 nm红光)上的粒子集居除了来源于CU过程之外,还有740 nm红光的发射和1G4能级上部分粒子的无辐射跃迁(1G4→3F2, 3)两条途径,因此样品中695 nm红光强度明显要大于740 nm红光强度。通过交叉驰豫作用CR2和CR3以及反向共振能量转移RET2,Tm3+/Ho3+共掺碲酸盐玻璃中Tm3+的1G4能级(发射474 nm蓝光)上的粒子集居数比单掺Tm3+时出现了净增加。Tm3+的1G4能级上粒子集居数的增加可能进一步强化了该能级的无辐射跃迁、740 nm红光的发射以及CU过程,并进而促使Tm3+的3F2, 3能级上的粒子集居。所以,当Tm3+/Ho3+共掺碲酸盐玻璃与单掺Tm3+碲酸盐玻璃中掺杂相同浓度的Tm3+时,前者的红光和蓝光等上转换荧光强度均比后者要大。本文还研究了Tm3+之间以及Tm3+与 Ho3+之间的交叉弛豫和能量传递等效应,并进一步探讨了Tm3+与 Ho3+之间的能量转换机制。  相似文献   

20.
荧光俘获效应对掺饵氧化物玻璃光谱性质的影响   总被引:4,自引:1,他引:3       下载免费PDF全文
测试了不同掺杂浓度和样品厚度下掺铒磷酸盐和碲酸盐玻璃的吸收光谱、荧光光谱和荧光寿 命,计算了Er3+离子在1.53 μm处的吸收截面(σa)、发射截面(σ e)、自发辐射跃迁概率(Arad)、辐射跃迁寿命(τrad) 、以及辐射跃迁量子效率(η)等光谱参数.讨论了荧光俘获效应对掺铒磷酸盐和碲酸盐玻璃 光谱性质及光谱参数的影响.结果表明即使在铒离子低掺杂浓度(0.1 mol% Er2O 3)下,荧光俘获效应也普遍存在于掺铒玻璃材料中,使得荧光寿命(τf)和荧光半高宽(FWHM)随样品的厚度和铒离子掺杂浓度增加而增大,导致碲酸盐和磷酸 盐玻璃中τf分别增加11%—37%和6%—17%,FWHM分别增加15%—64%和11%—55% ,使得掺铒玻璃材料的放大品性参数(σe×FWHM) 也相应被估高.由于铒离子在 碲酸盐玻璃中在1.53 μm处吸收和发射截面重叠面积较大,加之铒离子在前者基质中的发射 截面高于后者,使得掺铒碲酸盐玻璃中的荧光俘获效应高于磷酸盐玻璃. 关键词: 荧光俘获 铒离子 碲酸盐玻璃 磷酸盐玻璃  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号