首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have investigated the tripod-shaped bromo adamantane trithiol (BATT) molecule on Au(111) using scanning tunneling microscopy (STM) at 4.7 K. Adsorption of BATT leads to formation of highly ordered self-assembled monolayers (SAMs) with three-point contacts on Au(111). The structure of these SAMs has been found to have a two-tiered hierarchical chiral organization. The self-assembly of achiral monomers produces chiral trimers, which then act as the building blocks for chiral hexagonal supermolecules. SAMs begin to form from the racemic mixture of assembled molecules in ribbon-shaped islands, followed by the transformation to enantiomeric domains when SAM layers develop two-dimensionally across hcp domains. Such a chiral phase transition at the two-dimensional domain can arise from a subtle balance between molecule-substrate and intermolecular interactions. Two structural factors, the S atom (stabilization) and the methylene groups (chirality) located just above the S atom, induce the chiral ordering of BATT on Au(111).  相似文献   

2.
By incorporating an achiral diazine ligand, 2-pyridylmethylketazine, which can be locked in a chiral conformation upon coordination, into the manganese(II)-azido system, we induced a homochiral 2D network, in which neighboring Mn(II) ions are bridged via a diazine and two end-on azido ligands into chiral dimeric units, and neighboring units are interlinked via single end-to-end azido bridges. The interdimer chirality preservation is achieved via the homochiral 1D helical linkage formed by Mn(II) and end-to-end azido ions. The 2D layers are stacked in hetero- and homochiral fashion to yield simultaneously racemic and chiral crystals, indicating a partial spontaneous resolution. Both compounds behave as spin-canted weak ferromagnets, but the critical temperatures are different.  相似文献   

3.
The resolution of racemic 1-benzyl-5-oxo-3-pyrrolidinecarboxylic acid 1, a potent chiral synthon with high pharmacological activity, was investigated with a variety of basic chiral resolving agents via diastereomeric salt formation. The findings in the optimization of resolution conditions aiming at an industrial-scale production revealed that (S)-phenylalanine benzylamide (S)-10 and 2-propanol containing ca. 4 mol % of water to (RS)-1 were the best conditions for obtaining enantiopure less-soluble diastereomeric salt, (S)-1/(S)-10/0.5H2O (81%, 98% de, E 79%). X-ray crystallographic analysis of the salt clearly revealed that water molecules play a key role in crystallizing the enantiopure salt crystals, while stabilizing the crystal structure via three types of hydrogen-bond network associated with water molecules in addition to usual acid–base hydrogen bond.  相似文献   

4.
Synthesis of thiophene-based [7]helicenes, which are functionalized for both design of organic chiral glasses with strong chiroptical properties and for further homologation to higher [n]helicenes, is reported. The key synthetic transformations are kinetic resolution of the intermediate diketone and the annelation step forming the center benzene ring by means of an intramolecular McMurry reaction. Based upon X-ray crystallographic determinations of the absolute configurations for (+)-enantiomers of the diketone and the [7]helicene, stereochemical correlation between the (R) axial chirality of the diketone and the (M) helical chirality of the [7]helicene is established. One such enantiopure trimethylsilyl-substituted [7]helicene possesses enchanced chiroptical properties and forms a chiral molecular glass.  相似文献   

5.
An achiral oligo(p-phenylene vinylene) derivative with a ureido-triazine hydrogen bonding unit self-assembles into rows of hydrogen bonded dimers at the liquid/solid interface. Scanning tunneling microscopy reveals the formation of chiral domains, but overall, the surface remains racemic. Addition of a chiral auxiliary which is able to interact with the dimers through hydrogen bonding, showed that global organizational chirality could be achieved since a majority of the domains show the same handedness. After removing the chiral auxiliary with a volatile solvent, the global organizational chirality could be trapped, revealing a memory effect. With this straightforward supramolecular approach, we were able to create a chiral surface with preferred handedness composed of achiral molecules at the air/solid interface.  相似文献   

6.
Axial chirality was induced in biphenyldiol upon binding chiral amines with the efficiency of chiral induction much improved at low temperature. At low temperatures, two molecules of amine were bound to biphenyldiol. The value of the dissymmetric g-factor increased as proton-transferred hydrogen bonds formed between biphenyldiol and amine. These results indicate that proton-transferred hydrogen bonding plays an important role in constructing a highly ordered chiral assembly.  相似文献   

7.
A set of optically active and racemic n-alkylammonium pyroglutamates from dodecyl to octadecyl were synthesized and characterised. Their thermotropic polymorphism was investigated by polarizing optical microscopy, differential scanning calorimetry and dilatometry. Their structure in the crystalline and smectic state was analysed by X-ray diffraction. The hydrogen bonding of the molecules in the crystalline and smectic layers was examined by infrared spectroscopy. The chirality control over the supramolecular self-assembly of the molecules along with the homochiral and heterochiral architecture of the self-assembled dimers are briefly discussed.  相似文献   

8.
We present X-ray photoelectron spectroscopy (XPS) and X-ray photoelectron diffraction (XPD) investigations of CuO thin films electrochemically deposited on an Au(001) single-crystal surface from a solution containing chiral tartaric acid (TA). The presence of enantiopure TA in the deposition process results in a homochiral CuO surface, as revealed by XPD. On the other hand, XPD patterns of films deposited with racemic tartaric acid or the "achiral" meso-tartaric acid are completely symmetric. A detailed analysis of the experimental data using single scattering cluster calculations reveals that the films grown with l(+)-TA exhibit a CuO(1) orientation, whereas growth in the presence of d(-)-TA results in a CuO(11) surface orientation. A simple bulk-truncated model structure with two terminating oxygen layers reproduces the experimental XPD data. Deposition with alternating enantiomers of tartaric acid leads to CuO films of alternating chirality. Enantiospecifity of the chiral CuO surfaces is demonstrated by further deposition of CuO from a solution containing racemic tartaric acid. The pre-deposited homochiral films exhibit selectivity toward the same enantiomeric deposition pathway.  相似文献   

9.
The crystal structures of [Pr(dbm)3H2O] (1), [Sm(dbm)3H2O] (2), and [Er(dbm)3H2O] (3) have been determined (dbm=dibenzoylmethane). They display seven-coordinate propeller-shaped molecules, which are chiral and crystallize as conglomerates in space group R3. Analysis of the crystal structures reveals supramolecular interactions, including formation of a quadruple helix, which explain how stereochemical information can be transferred between stacks of molecules. A method to quantify the ee in bulk samples of stereochemically labile compounds by using solid-state CD spectroscopy is described. Using this method, it has been shown that compounds 1-3 undergo total spontaneous resolution directly after synthesis, forming a microcrystalline reaction product that is essentially enantiopure. The resolution of bulk quantities of seven-coordinate complexes (without chiral or polydentate ligands) is thus reported for the first time. Because the crystallization starts without seeding, the overall preparation may be regarded as absolute asymmetric synthesis.  相似文献   

10.
[structure: see text] The complexation behavior, chirality induction and inversion in the achiral host, a racemic mixture of ethane-bridged bis(zinc octaethylchlorin) (1), and optical activity modulation in the chiral hosts, enantiopure 1(R) and 1(S), upon interaction with chiral and achiral amine guests have been investigated by means of the UV-vis, CD, and (1)H NMR techniques and compared with the corresponding spectral data of the bis-porphyrin analogue. It was found that the chirogenesis pathway is strongly dependent upon the structures of both major components (hosts and guests) of these supramolecular systems. Particularly, the distinct orientation of electronic transitions in the chlorin chromophores arisen from the reduced pyrrole ring, which makes it radically different from that of the porphyrin chromophores, and the size of the guest's substituents lead to the remarkable phenomenon of chirality induction-inversion in racemic 1 originating from the process of asymmetry transfer from enantiopure guests of the same homologous type and absolute configuration. This surprising chirogenic behavior is found to be in a sharp contrast to that observed in the analogous porphyrin-based systems. Furthermore, these structural and electronic phenomena also account for the effective optical activity quenching of enantiopure 1(R) and 1(S) upon interaction with chiral and with achiral amines, which results in formation of supramolecular complexes of opposite chirality.  相似文献   

11.
Noncovalent interactions are particularly intriguing when they involve chiral molecules, because the interactions change in a subtle way upon replacing one of the partners by its mirror image. The resulting phenomena involving chirality recognition are relevant in the biosphere, in organic synthesis, and in polymer design. They may be classified according to the permanent or transient chirality of the interacting partners, leading to chirality discrimination, chirality induction, and chirality synchronization processes. For small molecules, high-level quantum chemical calculations for such processes are feasible. To provide reliable connections between theory and experiment, such phenomena are best studied in vacuum isolation at low temperature, using rotational, vibrational, electronic, and photoionization spectroscopy. We review these techniques and the results which have become available in recent years, with special emphasis on dimers of permanently chiral molecules and on the influence of conformational flexibility. Analogies between the microscopic mechanisms and macroscopic phenomena and between intra- and intermolecular cases are drawn.  相似文献   

12.
The vast majority of chiral compounds crystallize into racemic crystals. It has been predicted and was experimentally established as a rule that chiral molecules on surfaces are more easily separated into homochiral domains due to confinement into a plane and lower entropic contributions. We investigated the formation and stability of two-dimensional tartrate crystals on a Cu(110) surface for the racemic mixture for the first time by means of temperature-programmed desorption (TPD), low-energy electron diffraction (LEED), and X-ray photoelectron spectroscopy (XPS). At low coverage, a bitartrate species becomes separated into homochiral domains, while at high coverage a monotartrate species forms a racemic mixture. At the same coverage and lateral arrangement, the thermally induced autocatalytic decomposition reaction occurs for the monotartrate racemate at a lower temperature than for the pure enantiomers. The stereochemistry in this so-called "surface explosion" reaction is explained by a higher stability of the enantiopure lattice due to lateral hydrogen-bond formation. The higher stability of the enantiopure two-dimensional lattice is in contrast to the higher stability of racemic three-dimensional tartaric acid crystals but is consistent with the observation that homochirality is preferred in hydrogen-bonded self-assembled biomolecular structures.  相似文献   

13.
We report the formation of highly-ordered self-assembled monolayers of an achiral organic semiconductor molecule. STM results show spontaneous formation of very large single domains of ordered chiral monolayers. DFT calculations support the identification of halogen bonds as the primary interactions that steer molecular self-assembly, leading to organizational chirality.  相似文献   

14.
Circularly polarized photodetectors require chiral light absorption materials with high sensing efficiency and low costs. Here readily accessible point chirality has been introduced to dicyanostilbenes as the chiral source, facilitating remote chirality transfer to the π-aromatic core by cooperative supramolecular polymerization. The single-handed supramolecular polymers display powerful circularly polarized photodetection capability with a dissymmetry factor value as high as 0.83, superior to those of π-conjugated small molecules and oligomers. Strong chiral amplification occurs between the enantiopure sergeants and the achiral soldiers. The resulting supramolecular copolymers exhibit comparable photodetection efficiency to those of the homopolymeric ones, with a 90 % decrease in the enantiopure compound consumption. Therefore, cooperative supramolecular polymerization provides an effective yet economical avenue toward circularly polarized photodetection applications.  相似文献   

15.
Inherently chiral phosphonatocavitands with various bridging moieties at their wide rim were synthesized. Optical resolution by chiral HPLC was performed with cavitand 8 to afford enantiopure compounds (+)-8 and (-)-8. The molecular structures of hosts 8 and 12 were determined by X-ray diffraction. The host properties were investigated by (1)H and (31)P NMR spectroscopy. The phosphonatocavitands form inclusion complexes with chiral ammonium neurotransmitters, some presenting enantioselectivity towards the right or left-handed host enantiomers.  相似文献   

16.
The formation of DNA nucleoside-assisted π-conjugated nanostructures was studied by means of scanning tunneling microscopy (STM) and force field simulations. Upon adsorption of the achiral oligo(p-phenylenevinylene) (OPV) derivative at the liquid/solid interface, racemic conglomerates with mirror related rosettes are formed. Addition of the DNA nucleosides D- and L-thymidine, which act as "chiral handles", has a major effect on the supramolecular structure and the expression of chirality of the achiral OPV molecules. The influence of these "chiral handles" on the expression of chirality is probed at two levels: monolayer symmetry and monolayer orientation with respect to the substrate. This was further explored by tuning the molar ratio of the building blocks. Molecular modeling simulations give an atomistic insight into the monolayer construction, as well as the energetics governing the assembly. Thymidine is able to direct the chirality and the pattern of OPV molecules on the surface, creating chiral lamellae of π-conjugated dimers.  相似文献   

17.
Adsorption structures formed from a class of planar organic molecules on the Au(111) surface under ultrahigh vacuum conditions have been characterized using scanning tunneling microscopy (STM). The molecules have different geometries, linear, bent, or three-spoke, but all consist of a conjugated aromatic backbone formed from three or four benzene rings connected by ethynylene spokes and functionalized at all ends with an aldehyde, a hydroxyl, and a bulky tert-butyl group. Upon adsorption, the molecules adopt different surface conformations some of which are chiral. For the majority of the observed adsorption structures, chirality is expressed also in the molecular tiling pattern, and the two levels of chirality display a high degree of correlation. The formation and chiral ordering of the self-assembled structures are shown to result from dynamic interchanges between a diffusing lattice gas and the nucleated islands, as well as from a chiral switching process in which molecules alter their conformation by an intramolecular rotation around a molecular spoke, enabling them to accommodate to the tiling pattern of the surrounding molecular structures. The kinetics of the conformational switching is investigated from time-resolved, variable temperature STM, showing the process to involve an activation energy of approximately 0.3 eV depending on the local molecular environment. The molecule-molecule interactions appear primarily to be of van der Waals character, despite the investigated compounds having functional moieties capable of forming intermolecular hydrogen bonds.  相似文献   

18.
We present investigations on noncovalent bonding and supramolecular self-assembly of two related molecular building blocks at a noble metal surface: 4-[trans-2-(pyrid-4-yl-vinyl)]benzoic acid (PVBA) and 4-[(pyrid-4-yl-ethynyl)]benzoic acid (PEBA). These rigid, rodlike molecules comprising the same complementary moieties for hydrogen bond formation are comparable in shape and size. For PVBA, the ethenylene moiety accounts for two-dimensional (2-D) chirality upon confinement to a surface; PEBA is linear and thus 2-D achiral. Molecular films were deposited on a Ag(111) surface by organic molecular beam epitaxy and characterized by scanning tunneling microscopy. At low temperatures (around 150 K), both species form irregular networks of flat lying molecules linked via their endgroups in a diffusion-limited aggregation process. In the absence of kinetic limitations (adsorption or annealing at room temperature), hydrogen-bonded supramolecular assemblies form which are markedly different. With PVBA, enantiomorphic twin chains in two mirror-symmetric species running along a high-symmetry direction of the substrate lattice form by diastereoselective self-assembly of one enantiomer. The chirality signature is strictly correlated between neighboring twin chains. Enantiopure one-dimensional (1-D) supramolecular nanogratings with tunable periodicity evolve at intermediate coverages, reflecting chiral resolution in micrometer domains. In contrast, PEBA assembles in 2-D hydrogen-bonded islands, which are enantiomorphic because of the orientation of the supramolecular arrangements along low-symmetry directions of the substrate. Thus, for PVBA, chiral molecules form 1-D enantiomorphic supramolecular structures because of mesoscopic resolution of a 2-D chiral species, whereas with PEBA, the packing of an achiral species causes 2-D enantiomorphic arrangements. Model simulations of supramolecular ordering provide a deeper understanding of the stability of these systems.  相似文献   

19.
We present an experimental study on the first stages of the thin film growth of the organic molecule F(16)CuPc (hexadecafluoro-copper-phthalocyanines) on SiO(2). By means of in situ X-ray reflectivity, in situ grazing incidence X-ray diffraction (GIXD), and ex situ atomic force microscopy (AFM), we provide a detailed picture of the film growth mode and its structural evolution at the nanometer scale. We discovered the formation of a low-density layer of molecular aggregates with heights between 5 and 10 A at the interface with the SiO(2) and show that, on top of this interfacial layer, the nucleation and two-dimensional growth of elongated islands of upright standing molecules take place. Structural changes are observed, pointing to significant relaxations of the lattice parameters within the first layers of standing molecules.  相似文献   

20.
The study of an enantiopure bicyclic pillar[5]arene-based molecular universal joint (MUJ) by single-crystal X-ray diffraction allowed for the first time the unequivocal assignment of the absolute configuration of a planar chiral pillar[5]arene by circular dichroism spectroscopy. Crucially, the absolute configuration of the MUJ was switched reversibly by temperature, with an accompanying sign inversion of the anisotropy factor that varied by as much as 0.03, which is the largest value ever reported. Mechanistically, the reversible chirality switching of the MUJ is driven by the threading/dethreading motion of the fused ring and hence is dependent on both the size and nature of the ring and the solvent employed, reflecting the critical balance between the self-complexation of the ring by pillar[5]arene, the solvation to the excluded ring, and the inclusion of solvent molecules in the cavity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号