首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用分子动力学方法和Quantum Sutton-Chen(Q-SC)多体势对由5万个液态金属铜(Cu)原子构成的系统在三个不同冷却速率下的凝固过程中微观团簇结构转变的影响进行了模拟研究.运用双体分布函数、Honeycutt-Andersen(HA)键型指数法、原子团类型指数法(CTIM-2)和可视化分析等方法,对凝固过程中微观团簇结构的演变特性进行了分析研究.结果发现:由非晶体向晶体转变的临界速度约为1.0×1013K/s,在此冷速下系统形成非晶体和晶体以一定比例并存的混合结构;在冷速为1.0×1014K/s冷却时系统形成以1551、1541、1532、1431键型为主的非晶体结构,非晶转化温度约为673K;在以4.0×1012K/s速度冷却时,系统从673K就开始结晶,并形成以1421和1422二种键型或由这二种键型构成的面心立方(FCC)(12 0 0 0 12 0)和六角立方(HCP)(12 0 0 0 6 6)基本原子团为主的晶体结构,尤其是由1421键型构成的面心立方(12 0 0 0 12 0)基本原子团在晶体生长和微观团簇结构形成过程中占主导地位. 同时发现,冷速对金属Cu系统中的FCC结构和HCP结构的相对比例有显著的影响,冷速越低,FCC基本原子团以及由其构成的团簇结构越多。  相似文献   

2.
采用分子动力学方法和Quantum Sutton-Chen(QS-C)多体势,对液态金属铜(Cu)凝固过程中的晶体生长规律及纳米团簇微观结构转变特性进行了模拟跟踪研究.运用Honeycutt-Andersen(HA)键型指数法和新的原子团类型指数法(CTIM-2)分析了金属Cu原子的成键类型和原子团簇结构演变特性.结果发现:当以1.0×1013K/s速率凝固时,系统最终形成晶体和非晶体混合共存结构;在以4.0×1012K/s速度冷却时,系统从673K就开始结晶,并形成以1421和1422二种键型为主的晶体结构;面心立方(FCC)和六角密集(HCP)结构在形成晶体铜时起着非常重要的作用,尤其是由1421键型构成的面心立方(12 0 0 0 12 0)基本原子团在晶体生长和纳米团簇结构形成过程中占主导地位.  相似文献   

3.
采用分子动力学方法和Quantum Sutton-Chen(QS-C)多体势,对液态金属铜(Cu)凝固过程中的晶体生长规律及纳米团簇微观结构转变特性进行了模拟跟踪研究.运用Honeycutt-Andersen(HA)键型指数法和新的原子团类型指数法(CTIM-2)分析了金属Cu原子的成键类型和原子团簇结构演变特性.结果发现:当以1.0×1013K/s速率凝固时,系统最终形成晶体和非晶体混合共存结构;在以4.0×1012K/s速度冷却时,系统从673K就开始结晶,并形成以1421和1422二种键型为主的晶体结构;面心立方(FCC)和六角密集(HCP)结构在形成晶体铜时起着非常重要的作用,尤其是由1421键型构成的面心立方(12 0 0 0 12 0)基本原子团在晶体生长和纳米团簇结构形成过程中占主导地位.  相似文献   

4.
采用分子动力学方法对六种不同冷却速率对液态金属Pb凝固过程中微观团簇结构演变的影响进行了模拟跟踪研究.采用双体分布函数、Honeycutt-Andersen键型指数法、原子团类型指数法(CTIM-2)、平均配位数等方法对凝固过程中微观团簇结构的演变进行了分析.结果表明:系统存在一个形成非晶态或晶态结构的临界冷速(介于5×1012与1×1012之间),大于这个临界冷速时,系统将形成以1551,1541和1431键型为主的非晶态结构;当小于这个临界冷速时,系统将先形成以1441和1661键型或以bcc基本原子团(14 6 0 8 0 0)为主的晶态结构,并稳定存在一段时间,然后又迅速转变为以1421和1422键型为主或以fcc基本原子团(12 0 0 0 12 0)和hcp基本原子团(12 0 0 0 6 6)以一定比例并存的部分晶态结构;同时发现,冷速对系统中fcc结构和hcp结构的相对比例有明显的影响,冷速越低,fcc结构所占的比例越多,越倾向于形成完美的fcc晶态结构. 关键词: 液态金属铅 凝固过程 团簇结构演变 分子动力学模拟  相似文献   

5.
采用Quantum Sutton-Chen(Q-SC)多体势对液态金属Cu在四个不同冷却速率下的凝固过程进行了分子动力学模拟研究. 通过双体分布函数、键型指数、配位数、均方位移及可视化分析, 结果表明:冷却速率对液态金属Cu的微观结构演变有决定性影响. 当冷却速率为1.0×1014K/s时得到非晶态结构;当冷速分别为1.0×1013K/s,1.0×1012K/s和1.3×1011K/s时,系统形成以1421键型为主体的面心立方(fcc)与六角密集(hcp)共存的混合晶体结构;且其结晶温度分别为373K,773K和873K,即冷速越慢,其结晶温度越高,结晶程度也越高;且冷速越慢,1421键型越多,混合晶体中面心立方(fcc)结构所占的比例越高. 同时发现,原子的平均配位数的变化与1551,1441,1661键型的变化密切相关, 反映出体系对称性结构的变化规律与配位数的变化有关. 在可视化分析中,进一步采用中心原子法展现出非晶态与晶体结构的2D截面,及在3D下混合晶体中两个基本原子团分别为面心立方(fcc)与六角密集(hcp)基本原子团的具体结构. 关键词: Q-SC多体势 液态金属Cu 凝固过程 分子动力学模拟  相似文献   

6.
本文采用Quantum Sutton-Chen多体势,对由5万个液态金属Cu原子组成系统的原子团簇的形成与演变特性进行了分子动力学模似研究.我们采用原子团类型指数法(CTIM)来描述复杂的微观结构转变.研究发现:系统形成以1551、1541和1431三种键型为主的非晶态结构;二十面体原子团(12 0 12 0)和(12 2 8 2)、(13 1 10 2)、(13 3 6 4)、(14 1 10 3)、(14 2 8 4)、(14 3 6 5)缺陷多面体基本原子团在液态转变为非晶体过程中起着关键性的作用.系统所形成的纳米团簇是由一些基本团簇和由这些基本团簇相互连接而成的中等团簇所组成,这正是与由气相沉积法和离子溅射法所获得的团簇结构的本质差别所在.通过双体分布函数g(r)、HA键型、基本原子团、平均原子体积和比值g_(min)/g_(max)的分析,还得到液态金属Cu在冷却速率为1.0×10~(14)K/S时的非晶转变温度T_8约为673 K.同时还发现,1551、1441、1661三种键型随温度有相同的变化趋势,这反映出体系对称性结构有相同的变化规律.  相似文献   

7.
采用分子动力学方法对不同冷速下液态金属镁(Mg)快速凝固过程中的微观结构演变进行了模拟研究.并采用能量-温度(E-T)曲线、双体分布函数、Honeycutt-Andersen键型指数法、原子团簇类型指数法(CTIM-3)以及三维可视化等方法系统地考察了凝固过程中微观结构演变与相转变过程.结果发现:在以冷速为1×10~(11)K/s的凝固过程中,亚稳态bcc相优先形成,随后大量解体,其变化规律符合Ostwald规则,系统最终形成以hcp结构为主体与fcc结构共存,中间还夹杂部分bcc结构的致密晶体结构.在1×10~(12)K/s冷速下,结晶过程呈现迟缓现象,形成bcc结构的初始温度降低,系统形成以hcp居多、与bcc和fcc三相共存的结构,且因相互竞争、相互制约而导致不易形成粗大的晶粒结构.而在1×10~(13)K/s冷速下,系统则形成以1551,1541,1431键型为主的多种非晶态基本原子团组成的非晶态结构.此外,在冷速1×10~(12)与1×10~(13)K/s之间的确存在一个形成非晶态结构的临界冷速.  相似文献   

8.
采用分子动力学方法对液态金属Na在四种不同冷速下的快速凝固过程进行了模拟跟踪研究.采用双体分布函数g(r)曲线、Honeycutt-Andersen键型指数法和原子团类型指数法对凝固过程中微观结构的变化进行了分析.结果表明:冷却速率对微结构的转变有决定性影响,当冷速为1.0×1014和1.0×1013K/s时,系统形成以1551和1541键型或以缺陷多面体基本原子团(13 1 10 2)和二十面体基本原子团(12 0 12 0)为主体的非晶态结构;当冷速为1.0×1012和1.0×1011K/s时,系统则形成以1441和1661键型或以体心立方基本原子团(14 6 0 8)为主体的晶态结构.同时发现:不同冷速对液态金属Na在液态和过冷态时微观结构的影响甚小;但不同冷速对其固态(非晶态利晶态)时的微观结构有显著的影响,且要在液-固转变点(分别在玻璃转变温度Tg和晶化起始温度Tc)附近或以后才能充分展现出来.根据这一特点,有可能建立另一种确定液态金属Tg和Tc的新方法.原子团类型指数法比键型指数法更有利于研究液态、非晶态等无序体系和一些晶化体系的具体结构特征. 关键词: 液态金属Na 凝固过程 分子动力学模拟 原子团类型指数法  相似文献   

9.
采用分子动力学方法对液态金属Ga凝固过程中不同冷却速率对微观结构演变的影响进行了模拟跟踪研究. 运用HA键型指数法和原子成团类型指数法(CTIM)分析了金属原子Ga的成键类型和形成的基本原子团结构. 结果发现,冷却速率对凝固过程中的微观结构起着非常重要的作用. 在以1.0×1014,1.0×1013,1.0×1012K/s的速率冷却时,系统形成以与1311,1301键型相关的菱面体结构为主,夹杂着立方体、六角密集等其他团簇结构所构成的非晶态结构;在以1.0×1011K/s的速率冷却时,系统明显发生结晶,其结晶转变温度Tc约为198K,且冷却速率越慢,结晶转变温度Tc越高,形成以与1421键型相关的斜方晶体(经可视化分析确认)为主要构型的晶态结构. 这将为研究液态金属的结晶转变过程提供一种新方法. 关键词: 液态金属Ga 凝固过程 微结构转变 分子动力学模拟  相似文献   

10.
采用量子 Sutton-Chen多体势, 对熔体初始温度热历史条件对液态金属Ni快速凝固过程中微观结构演变的影响进行了分子动力学模拟研究. 采用双体分布函数g(r)曲线、键型指数法、原子团类型指数法和三维可视化等分析方法对凝固过程中微观结构的演变进行了分析. 结果表明: 熔体初始温度对凝固微结构有显著影响, 但在液态和过冷态时的影响并不明显, 只有在结晶转变温度Tc附近才开始充分显现出来. 体系在1×1012 K/s的冷速下, 最终均形成以1421和1422键型或面心立方(12 0 0 0 12 0)与六角密集(12 0 0 0 6 6) 基本原子团为主的晶态结构. 末态时, 不同初始温度体系中的主要键型和团簇的数目有很大的变化范围, 且与熔体初始温度的高低呈非线性变化关系. 然而, 体系能量随初始温度呈线性变化关系, 初始温度越高, 末态能量越低, 其晶化程度越高. 通过三维可视化分析进一步发现, 在初始温度较高的体系中, 同类团簇结构的原子出现明显的分层聚集现象, 随着初始温度的下降, 这种分层现象将被弥散开去. 可视化分析将更有助于对凝固过程中微观结构演变进行更为深入的研究. 关键词: 液态金属Ni 熔体初始温度 微观结构 分子动力学模拟  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
Journal of Statistical Physics -  相似文献   

20.
Journal of Statistical Physics -  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号