首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Our new waveguide pulsed CO2 laser, with peak powers above 1 kW, has allowed us to observe 24 new far-infrared laser lines emitted by hydrazine. Each of them is characterized in wavelength, relative polarization, intensity, optimum operating pressure and pump offset from the center of the exciting CO2 line. These new laser emissions either form pairs sharing the same pump line, or complete such pairs with lines known from the literature. In the latter case, we have measured the relative polarization and offset of the partner lines whenever they were not reported in the literature. The availability of laser systems with two emission lines orthogonally polarized and sharing the same upper level is expected to facilitate the assignment work. We present complete assignments for four FIR laser emissions, and we propose J and K values for 12 further laser systems. PACS 42.55.Lt; 42.62.Fi  相似文献   

2.
In this paper, infrared (IR) and far-infrared (FIR) laser emissions from a TE CO2 laser pumped NH3 gas are reported. 8 IR laser emissions near the wavelength of 12 μm were observed by using 4 different CO2 laser lines for the pumping. 3 IR laser emissions in P-branch of vibrational-rotational band (ν2 → G) oscillated simultaneously in two pumping cases, i.e. pumping with the R(30) or R(16) line of 9.4 μm band from the CO2 laser. 26 FIR laser emissions (26.45 μm ~ 281.0 μm) were observed by using 12 different CO2 laser lines, and the 10 FIR emissions of them may be new laser emissions as far as we know.  相似文献   

3.
A 13C16O2 laser optically pumping a FIR laser has resulted in 17 new FIR cw emissions from 78.5 μm to 917 μm. The FIR media were: CD3OD, CH3OD, CD3OH, NH3 and 15NH3. Interesting effects have been observed with a combination of NH3 and CD3OD resulting in a new FIR emission. Two new FIR emissions at 181.5 μm and 355.5 μm have been observed with a 12C16O2 laser optically pumping CD3OD.  相似文献   

4.
A three-laser heterodyne system was used to measure the frequencies of twelve previously observed far-infrared laser emissions from the partially deuterated methanol isotopologues 13CD3OH and CHD2OH. Two laser emissions, a 53.773 μm line from 13CD3OH and a 74.939 μm line from CHD2OH, have also been discovered and frequency measured. The CO2 pump laser offset frequency was measured with respect to its center frequency for twenty-four FIR laser emissions from CH3OH, 13CD3OH and CHD2OH. PACS 07.57.Hm; 42.55.Lt; 42.62.Eh  相似文献   

5.
Continued study of the high-resolution Fourier transform spectroscopy (FTS) of the fundamental CO-stretching band of13CD3OH has given additional insight into the far-infrared (FIR) laser emission observed when this molecule is optically pumped by a CO2 laser. Eleven IR-pump/FIR-laser transition systems are considered. Seven represent completely new assignments, while four have been presented previously but are discussed further with reference to recently reported experimental data. Ten of the assignment schemes have been rigorously checked by forming closed combination loops, and accurate FIR laser wavenumbers have been obtained. The superiority in precision of the FIR laser wavenumbers determined from FTS combination loops over those from traditional wavelength measurements is demonstrated.  相似文献   

6.
We report fifty seven CW FIR emissions observed in NH3, by resonant pumping with a CO2 laser. Exact coincidences between IR absorption lines of the gas and emission lines of the CO2 laser have been carried out by Stark tuning. IR frequency shifts, up to 30 GHz, have allowed the pumping of forty three NH3 transitions.These FIR emissions correspond to thirty one different wavelengths in the 50–400 m range; eighteen ones of them are new emitted wavelengths by pumping with the CO2 laser.  相似文献   

7.
A recently improved three-laser heterodyne system was used to frequency measure ten previously observed optically pumped far-infrared (FIR) laser emissions from the partially deuterated methanol isotopologue CH2DOH. Also, a 64.0 μm FIR emission generated by the 9P32 line of the carbon dioxide (CO2) laser was discovered and frequency measured. These newly measured frequencies have fractional uncertainties on the order of ±2×10-7 and correspond to laser wavelengths ranging from 42.6 to 152.7 μm. The offset frequency for the CO2 pump laser was measured for twenty-two CH2DOH FIR laser emissions. PACS 07.57.Hm; 42.55Lt; 42.62.Eh  相似文献   

8.
By using an acoustooptic modulator we extend the 300 MHz tunability of a waveguide CO2 laser to 480 MHz. The CD3OH was optically pumped by the 10R(32), 10R(34), and 10R(36) CO2 laser lines, and 17 new FIR laser lines were discovered. The Stark effect on previously known FIR laser lines was investigated, and some tentative FIR laser lines assignments are suggested.  相似文献   

9.
The CD3OH molecule has been investigated for new far-infrared laser lines by optically pumping with a cw waveguide CO2 laser. The increased tunability (300 MHz) with respect to a conventional CO2 laser permits to pump many new CD3OH lines. As a consequence 108 new laser lines have been discovered, ranging from 42.9 to 1155 m in wavelength. On some lines the effect of an electric Stark field has been investigated demonstrating a laser frequency tuning. The total number of known FIR laser lines from CD3OH is increased to about 340 making this molecule the most prolific together with CH3OH.  相似文献   

10.
Hydrazine (N2H4) and the deuterated isotopes of difluoromethane (CD2F2) and methanol (CH3OD and CD3OH) have been reinvestigated as sources of far-infrared (FIR) laser emissions using an optically pumped molecular laser system designed for wavelengths below 150 microns. With this system, seven FIR laser emissions from optically pumped N2H4, CH3OD and CD3OH were discovered with wavelengths ranging from 54.0 to 185.0 m. In addition, the polarizations of eight previously observed laser emissions from optically pumped N2H4, CH3OD and CD2F2 were measured for the first time. All laser emissions are reported with their operating pressures, relative polarizations and wavelengths, measured to ±0.5 m. The effectiveness of this particular system in generating short-wavelength laser emissions has been further demonstrated by the improvement in output power observed from nine known FIR laser emissions. PACS 07.57.Hm; 42.55.Lt  相似文献   

11.
The isotopomer of methanol, CD3OD, was optically pumped by a cw CO2 laser resulting in 53 new far-infrared (FIR) laser lines. The wavelengths are in the range 42.9 m to 189.9 m with the majority below 100 m. Ten different CO2 lines were used for the first time to pump CD3OD yielding new FIR laser lines. Some of the CO2 pump lines belong to the hot-bands and sequence-bands of CO2 in the 10 m region. The frequency was measured for 40 FIR laser lines in the range 1.5 THz to 6.9 THz, 32 of which were new laser lines.  相似文献   

12.
《Infrared physics》1993,34(3):227-267
We report on new effects in relation to optical pumping of far-infrared (FIR) superradiance and Raman emissions in CH3F, CH3CN, D2O, NH3 by rapidly truncated 10 μm CO2 laser pulses and optical-free-induction decay (OFID) 30 ps-10μm-CO2 laser pulses. Thus, we have found a drastic reduction of the FIR-pulse duration which is closely related to the fast truncation of about 10 ps of the plasma shutter used in our OFID 10 μm-CO2 laser system. The forward emissions exhibit the on-set of swept-gain superradiance and the appearance of Raman emission with increasing pressure in the FIR cell. This implies line competition between the superradiant and Raman emissions and thus results in different emission regimes which we have investigated systematically. The backward emissions are superradiant over the whole range of our investigations and show high quality with respect to stability and reproducibility which is important for applications.Furthermore, we have found that the CO2-pump radiation and the generated FIR Raman emission interact mutually which results in anticorrelated fluctuations of the two fields. We have been able to interpret this effect as a result of periodic back-and-forth fluctuations of the Λ-like three-level molecular systems.Finally, we have observed the development of OFID of the truncated CO2-pump pulses in the FIR-laser gases. This effect has been thoroughly investigated and as a result we have generated for the first time ps-10 μm-CO2-OFID pulses with FIR-laser gases as spectral filters instead of the usual hot CO2 gas. New phenomena and advantages of our new OFID system based on FIR laser gases are discussed.  相似文献   

13.
Twenty-seven new FIR, far-infrared, laser lines from the isotopomers of methanol: 12CD3OH, 12CH3OD, and 12CH2DOH, were obtained by optically pumping the molecules with an efficient cw CO2 laser. The CO2 laser provided pumping from regular, sequence, and hot-band CO2 laser transitions. The 2 m long far-infrared cavity was a metal-dielectric waveguide closed by two, flat end mirrors. Several short-wavelength (below 100 m) lines were observed. The frequencies of 28 laser lines observed in this cavity (including new lines and already known lines) were measured with a fractional uncertainty limited by the fractional resetability of the far-infrared laser cavity, of 2 parts in 107.  相似文献   

14.
A significantly improved far-infrared laser has been used to generate optically pumped laser emissions from 26 to 150 μm for CD3OH. Using an XV-pumping geometry, several new laser emissions have been found for CD3OH. In addition, an increase in power, by factors from 10 to 1000, for many of the previously known shorter-wavelength laser lines, below 100 μm, has been observed. Frequency measurements for several lines have also been performed and have been reported to a fractional uncertainty up to ±2×10-7, permitting the spectroscopic assignment of the laser transition. One of the frequency-measured lines, 44.256 μm observed using the 10R34 pump, has confirmed the assignment of the previously reported FIR emission (n,K;J)=(1,7;20)?(0,8;20)A in the ground vibrational state. Received: 26 October 2000 / Published online: 7 February 2001  相似文献   

15.
Reported far-infrared laser lines for five different transition systems of CH3NH2 optically pumped by a CO2 laser have been identified spectroscopically through a high-resolution Fourier transform infrared study of the C-N stretching band together with CO2-laser/microwave-sideband broad-scan and Lamb-dip measurements. From the infrared analysis plus previous far-infrared (FIR) results for the ground vibrational state, quantum numbers have been assigned for seven methylamine FIR laser transitions and their C-N stretching pump absorptions coincident with the CO2 laser lines. The assignments are confirmed through the use of closed frequency combination loops that also provide improved FIR laser frequencies to spectroscopic accuracy.  相似文献   

16.
    
An assignment is proposed for the strong 127.0 m far-infrared (FIR) line of13CD3OH known to be pumped with very high efficiency by the 10P(8) CO2 laser line. On the basis of spectroscopic clues derived from calculated molecular parameters and energies for13CD3OH, the 127 m line is identified as the (nK,J)=(116,17)(125, 16) transition, and its companion 462.8 m line as the (116,17)(116,16) transition. Proposed partial assignments and predictions are also discussed for a number of other FIR laser lines in13CD3OH, CD3OH, CD3OD, CH3OD, CH3OH and13CH3OH.  相似文献   

17.
In this work we report the first observation of FIR laser lines from13CD3OH pumped by the13CO2 isotope laser. Using the same pump we have also found 3 new lines from12CD3OH. Tentative assignments for the absorption and emission transitions of the observed lines are also proposed.Work supported by FAPESP. CNPq, FAEP/UNICAMP-Brasil and NSF-USA  相似文献   

18.
Forty seven new CW FIR emissions lines have been observed in CH3I,13CH3I and CD3I, optically pumped by a CO2 laser and a N2 laser, in a metallic waveguide resonator. Assignments are given for a large number of these new lines.  相似文献   

19.
Electric field effects have been investigated on the output power of six far-infrared (FIR) laser lines from H12COOH optically-pumped by a CO2 laser with its polarization arranged perpendicular to the Stark field. Optoacoustic signals observed on the pump lines were hardly affected by the applied electric field up to 0.6 kV/cm. By neglecting the electric field effects on the pump transitions, Zeeman laser theory has been applied to the FIR laser transitions. Numerical calculation predicts the observed FIR output power as a function of electric field. Experessions for oscillation frequency and intensity in homogeneous limit are given, which may be applicable to any FIR Stark laser so far as the pump transition is free from electric field effects.  相似文献   

20.
Forty two new far-infrared laser lines have been obtained from CH2CF2 by pumping with a 60 W CO2 laser. Several of these emissions have been assigned to rotation transitions within the v4 and v9 vibration manifolds; hot and combination band transitions are suspected for the others.this work was funded by the Ministry of Defence  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号