共查询到20条相似文献,搜索用时 15 毫秒
1.
Galina L. Starova Anna S. Denisova Evgeniya M. Demyanchuk 《Journal of Molecular Structure》2007,830(1-3):139-142
The structures of 3,3′-dicarbometoxy-2,2′-bipyridine (dcmbpy) complexes with copper(II) and silver(I) cations have been determined using single crystal X-ray-diffraction. The crystals of Cu(dcmbpy)Cl2 are monoclinic, C2/c, a = 16.966(3), b = 18.373(3), c = 13.154(2) Å, β = 126.543(3)°. The crystals of Ag(dcmbpy)NO3 · H2O are also monoclinic, C2/c, a = 16.7547(13), b = 11.0922(9), c = 18.7789(18) Å, β = 100.228(7)°. The results have been compared with the literature data on the complexes of dcmbpy and its precursors: 2,2′-bipyridine (bpy) and 3,3′-dicarboxy-2,2′-bipyridine (dcbpy). Two types of complexes of 3,3′-carboxy derivatives of bpy are distinguished: (1) with metal atom bonded to two N atoms of the same molecule and (2) with metal atom bonded to two N atoms of two different molecules. The Cu(dcmbpy)Cl2 complex belongs to the first type, whereas Ag(dcmbpy)NO3 · H2O belongs to the second type. 相似文献
2.
Guey-Sheng Liou Masa-Aki Kakimoto Yoshio Imai 《Journal of polymer science. Part A, Polymer chemistry》1993,31(13):3265-3272
New aromatic dicarboxylic acids having kink and crank structures, 2,2′-bis(p-carboxyphenoxy) biphenyl and 2,2′-bis(p-carboxyphenoxy)-1,1′-binaphthyl, were synthesized by the reaction of p-fluorobenzonitrile with biphenyl-2,2′-diol and 2,2′-dihydroxy-1,1′-binaphthyl, respectively, followed by hydrolysis. Biphenyl-2,2′-diyl-and 1,1′-binaphthyl-2,2′-diyl-containing aromatic polyamides having inherent viscosities of 0.58–1.46 dL/g and 0.63–1.30 dL/g, respectively, were obtained by the low-temperature solution polycondensation of the corresponding diacid chlorides with aromatic diamines. These polymers were readily soluble in a variety of organic solvents including N,N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), dimethyl sulfoxide, m-cresol, and pyridine. Transparent, pale yellow, and flexible films of these polymers could be cast from the DMAc or NMP solutions. These aromatic polyamides containing biphenyl and binaphthyl units had glass transition temperatures in the range of 210–272 and 260–315°C, respectively. They began to lose weight around 380°C, with 10% weight loss being recorded at about 450°C in air. © 1993 John Wiley & Sons, Inc. 相似文献
3.
Guey-Sheng Liou Masaki Maruyama Masa-Aki Kakimoto Yoshio Imai 《Journal of polymer science. Part A, Polymer chemistry》1993,31(10):2499-2506
New aromatic diamines having kink and crank structures, 2,2′-bis(p-aminophenoxy)biphenyl and 2,2′-bis(p-aminophenoxy)-1,1′-binaphthyl, were synthesized by the reaction of p-fluoronitrobenzene with biphenyl-2,2′-diol and 2,2′-dihydroxy-1,1′-binaphthyl, respectively, followed by catalytic reduction. Biphenyl-2,2′-diyl- and 1,1′-binaphthyl-2,2′-diyl-containing aromatic polyamides having inherent viscosities of 0.44–1.18 and 0.26–0.88 dL/g, respectively, were obtained either by the direct polycondensation or low-temperature solution polycondensation of the diamines with aromatic dicarboxylic acids (or diacid chlorides). These polymers were readily soluble in a variety of organic solvents including N,N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), dimethyl sulfoxide, m-cresol, and pyridine. Transparent, pale yellow, and flexible films of these polymers could be cast from the DMAc or NMP solutions. These aromatic polyamides containing biphenyl and binaphthyl units had glass transition temperatures in the range of 215–255 and 266–303°C, respectively. They began to lose weight at ca. 380°C, with 10% weight loss being recorded at about 470°C in air. © 1993 John Wiley & Sons, Inc. 相似文献
4.
Guey-Sheng Liou Masaki Maruyama Masa-Aki Kakimoto Yoshio Imai 《Journal of polymer science. Part A, Polymer chemistry》1993,31(13):3273-3279
New aromatic polyimides containing a biphenyl-2,2′-diyl or 1,1′-binaphthyl-2,2′-diyl unit were prepared by a conventional two-step method starting from 2,2′-bis(p-aminophenoxy) biphenyl or 2,2′-bis(p-aminophenoxy)-1,1′-binaphthyl and aromatic tetracarboxylic dianhydrides. The polyimides having inherent viscosities of 0.69–0.99 and 0.51–0.59 dL/g, respectively, were obtained. Some of these polymers were readily soluble in a variety of organic solvents including N,N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), dimethyl sulfoxide, and pyridine. Transparent, flexible, and pale yellow to brown films of these polymers could be cast from the DMAc or NMP polyamic acid solutions. These aromatic polyimides containing biphenyl and binaphthyl units had glass transition temperatures in the range of 200–235 and 286–358°C, respectively. They began to lose weight around 380°C, with 10% weight loss being recorded at about 470°C in air. © 1993 John Wiley & Sons, Inc. 相似文献
5.
Novel 4,4′‐dichloro‐2,2′‐[ethylenedioxybis(nitrilomethylidyne)]diphenol (H2L) and its complexes [CuL] and {[CoL(THF)]2(OAc)2Co} have been synthesized and characterized by elemental analyses, IR, 1H‐NMR and X‐ray crystallography. [CuL] forms a mononuclear structure which may be stabilized by the intermolecular contacts between copper atom (Cu) and oxygen atom (O3) to form a head‐to‐tail dimer. In {[CoL(THF)]2(OAc)2Co}, two acetates coordinate to three cobalt ions through Co? O? C? O? Co bridges and four µ‐phenoxo oxygen atoms from two [CoL(THF)] units also coordinate to cobalt ions. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
6.
Der-Jang Liaw Been-Yang Liaw Kuo-Liang Su 《Journal of polymer science. Part A, Polymer chemistry》1999,37(13):1997-2003
A series of new soluble polyamides having isopropylidene and methyl-substituted arylene ether moieties in the polymer chain were prepared by the direct polycondensation of 3,3′,5,5′-tetramethyl-2,2-bis[4-(4-carboxyphenoxy)phenyl]propane and various diamines in N-methyl-2-pyrrolidinone (NMP) containing CaCl2 using triphenyl phosphite and pyridine as condensing agents. Polymers were produced with moderate to high inherent viscosities of 0.85–1.47 dL g−1 while the weight-average molecular weight and number-average molecular weight were in the range of 86,700–259,000 and 43,300–119,000, respectively. All the polymers were readily dissolved in polar aprotic solvents such as NMP, N,N-dimethylacetamide, and N,N-dimethylformamide, as well as less polar solvents such as m-cresol and pyridine, and even soluble in tetrahydrofuran. These polymers were solution-cast into transparent, flexible and tough films. All of the polymers were amorphous and the polyamide films had a tensile strength range of 82–122 MPa, an elongation at break range of 6–18%, and a tensile modulus range of 2.0–2.8 GPa. These polyamides had glass transition temperatures between 233–260°C and 10% weight loss temperatures in the range of 450–489 and 459–493°C in nitrogen and air atmosphere, respectively. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1997–2003, 1999 相似文献
7.
Dejan Poleti Jelena Rogan Marko V. Rodi Lidija Radovanovi 《Acta Crystallographica. Section C, Structural Chemistry》2015,71(2):110-115
The novel polymeric complexes catena‐poly[[diaquamanganese(II)]‐μ‐2,2′‐bipyrimidine‐κ4N1,N1′:N3,N3′‐[diaquamanganese(II)]‐bis(μ‐terephthalato‐κ2O1:O4)], [Mn2(C8H4O4)2(C8H6N4)(H2O)4]n, (I), and catena‐poly[[[aquacopper(II)]‐μ‐aqua‐μ‐hydroxido‐μ‐terephthalato‐κ2O1:O1′‐copper(II)‐μ‐aqua‐μ‐hydroxido‐μ‐terephthalato‐κ2O1:O1′‐[aquacopper(II)]‐μ‐2,2′‐bipyrimidine‐κ4N1,N1′:N3,N3′] tetrahydrate], {[Cu3(C8H4O4)2(OH)2(C8H6N4)(H2O)4]·4H2O}n, (II), containing bridging 2,2′‐bipyrimidine (bpym) ligands coordinated as bis‐chelates, have been prepared via a ligand‐exchange reaction. In both cases, quite unusual coordination modes of the terephthalate (tpht2−) anions were found. In (I), two tpht2− anions acting as bis‐monodentate ligands bridge the MnII centres in a parallel fashion. In (II), the tpht2− anions act as endo‐bridges and connect two CuII centres in combination with additional aqua and hydroxide bridges. In this way, the binuclear [Mn2(tpht)2(bpym)(H2O)4] entity in (I) and the trinuclear [Cu3(tpht)2(OH)2(bpym)(H2O)4]·4H2O coordination entity in (II) build up one‐dimensional polymeric chains along the b axis. In (I), the MnII cation lies on a twofold axis, whereas the four central C atoms of the bpym ligand are located on a mirror plane. In (II), the central CuII cation is also on a special position (site symmetry ). In the crystal structures, the packing of the chains is further strengthened by a system of hydrogen bonds [in both (I) and (II)] and weak face‐to‐face π–π interactions [in (I)], forming three‐dimensional metal–organic frameworks. The MnII cation in (I) has a trigonally deformed octahedral geometry, whereas the CuII cations in (II) are in distorted octahedral environments. The CuII polyhedra are inclined relative to each other and share common edges. 相似文献
8.
Nela Farkaov Juraj ernk Milagros Toms Larry R. Falvello 《Acta Crystallographica. Section C, Structural Chemistry》2014,70(5):477-481
The reaction of NiCl2, K2C2O4·H2O and 2,2′‐bipyridine (bpy) in water–ethanol solution at 281 K yields light‐purple needles of the new pentahydrate of bis(2,2′‐bipyridine)oxalatonickel(II), [Ni(C2O4)(C10H8N2)2]·5H2O or [Ni(ox)(bpy)2]·5H2O, while at room temperature, deep‐pink prisms of the previously reported tetrahydrate [Ni(ox)(bpy)2]·4H2O [Román, Luque, Guzmán‐Miralles & Beitia (1995), Polyhedron, 14 , 2863–2869] were gathered. The asymmetric unit in the crystal structure of the new pentahydrate incorporates the discrete molecular complex [Ni(ox)(bpy)2] and five solvent water molecules. Within the complex molecule, all three ligands are bonded as chelates. The complex molecules are involved in an extended system of hydrogen bonds with the solvent water molecules. Additionally, π–π interactions also contribute to the stabilization of the extended structure. The dehydration of the pentahydrate starts at 323 K and proceeds in at least two steps as determined by thermal analysis. 相似文献
9.
Nela Farkaov Juraj ernk Larry R. Falvello Martin Orend
Roman Bo
a 《Acta Crystallographica. Section C, Structural Chemistry》2015,71(4):252-257
The title hydrated ionic complex, [Ni(CH3COO)(C12H12N2)2]ClO4·H2O or [Ni(ac)(5,5′‐dmbpy)2]ClO4·H2O (where 5,5′‐dmbpy is 5,5′‐dimethyl‐2,2′‐bipyridine and ac is acetate), (1), was isolated as violet crystals from the aqueous ethanolic nickel acetate–5,5′‐dmbpy–KClO4 system. Within the complex cation, the NiII atom is hexacoordinated by two chelating 5,5′‐dmbpy ligands and one chelating ac ligand. The mean Ni—N and Ni—O bond lengths are 2.0628 (17) and 2.1341 (15) Å, respectively. The water solvent molecule is disordered over two partially occupied positions and links two complex cations and two perchlorate anions into hydrogen‐bonded centrosymmetric dimers, which are further connected by π–π interactions. The magnetic properties of (1) at low temperatures are governed by the action of single‐ion anisotropy, D, which arises from the reduced local symmetry of the cis‐NiO2N4 chromophore. The fitting of the variable‐temperature magnetic data (2–300 K) gives giso = 2.134 and D/hc = 3.13 cm−1. 相似文献
10.
Jan W. Bats Kuangbiao Ma Hans‐Wolfram Lerner 《Acta Crystallographica. Section C, Structural Chemistry》2015,71(1):26-31
Crystal structures are reported for four (2,2′‐bipyridyl)(ferrocenyl)boronium derivatives, namely (2,2′‐bipyridyl)(ethenyl)(ferrocenyl)boronium hexafluoridophosphate, [Fe(C5H5)(C17H15BN2)]PF6, (Ib), (2,2′‐bipyridyl)(tert‐butylamino)(ferrocenyl)boronium bromide, [Fe(C5H5)(C19H22BN3)]Br, (IIa), (2,2′‐bipyridyl)(ferrocenyl)(4‐methoxyphenylamino)boronium hexafluoridophosphate acetonitrile hemisolvate, [Fe(C5H5)(C22H20BN3O)]PF6·0.5CH3CN, (IIIb), and 1,1′‐bis[(2,2′‐bipyridyl)(cyanomethyl)boronium]ferrocene bis(hexafluoridophosphate), [Fe(C17H14BN3)2](PF6)2, (IVb). The asymmetric unit of (IIIb) contains two independent cations with very similar conformations. The B atom has a distorted tetrahedral coordination in all four structures. The cyclopentadienyl rings of (Ib), (IIa) and (IIIb) are approximately eclipsed, while a bisecting conformation is found for (IVb). The N—H groups of (IIa) and (IIIb) are shielded by the ferrocenyl and tert‐butyl or phenyl groups and are therefore not involved in hydrogen bonding. The B—N(amine) bond lengths are shortened by delocalization of π‐electrons. In the cations with an amine substituent at boron, the B—N(bipyridyl) bonds are 0.035 (3) Å longer than in the cations with a methylene C atom bonded to boron. A similar lengthening of the B—N(bipyridyl) bonds is found in a survey of related cations with an oxy group attached to the B atom. 相似文献
11.
The acid dissociation constant, pKa, for the ground and excited states of ruthenium tris(4′-methyl-2,2′-bipyridine-4-carboxylic acid) complex have been measured. The ground state pKa obtained from the pH titration curve of the complex absorption at 454 nm was 2.5. The lifetimes of the excited-state for deprotonated and protonated ruthenium complexes are 595 and 150 ns, respectively. The excited-state pKa* is obtained from the emission titration curve at 630 nm and corrected for the excited-state lifetime to be 4.2. The increase of 1.7 pH units in the acid dissociation constant in the excited-state indicates that the ligand is much more basic in the excited-state. This result confirms the MLCT assignment for the lowest electronic transition of [Ru(mbpyCOOH)3]2+. 相似文献
12.
Guey-Sheng Liou 《Journal of polymer science. Part A, Polymer chemistry》1998,36(11):1937-1943
Aromatic tetracarboxylic dianhydride having crank and twisted noncoplanar structure, 2,2′-bis(3,4-dicarboxyphenoxy)-1,1′-binaphthyl dianhydride, was synthesized by the reaction of 4-nitrophthalonitrile with 2,2′-dihydroxy-1,1′-binaphthyl, followed by alkaline hydrolysis of the intermediate bis(ether dinitrile) and subsequent dehydration of the resulting bis(ether diacid). Binaphthyl-2,2′-diyl–containing novel aromatic polyimides having inherent viscosities up to 0.67 dL/g were obtained by the one-step polymerization process starting from the bis(ether anhydride) and various aromatic diamines. All the polyimides showed typical amorphous diffraction patterns. Most of the polyimides were readily soluble in common organic solvents such as N,N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), and pyridine. These aromatic polyimides had glass transition temperatures in the range of 280–350°C, depending on the nature of the diamine moiety. All polymers were stable up to 400°C, with 10% weight loss being recorded above 485°C in air. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1937–1943, 1998 相似文献
13.
Edwin C. Constable Egbert Figgemeier Catherine E. Housecroft Elaine A. Medlycott Markus Neuburger Silvia Schaffner Sbastien Reymann 《Polyhedron》2008,27(18):3601-3606
Two approaches to the formation of ruthenium(II) complexes containing ligands with conjugated 2,2′:6′,2″-terpyridine (tpy), alkynyl and bithienyl units have been investigated. Bromination of 4′-(2,2′-bithien-5′-yl)-2,2′:6′,2″-terpyridine leads to 4′-(5-bromo-2,2’-bithien-5′-yl)-2,2′:6′,2″-terpyridine (1), the single crystal structure of which has been determined. The complexes [Ru(1)2][PF6]2 and [Ru(tpy)(1)][PF6]2 have been prepared and characterized. Sonogashira coupling of the bromo-substituent with (TIPS)CCH did not prove to be an efficient method of preparing the corresponding complexes with pendant alkynyl units. The reaction of 4′-ethynyl-2,2′:6’,2″-terpyridine with 5-bromo-2,2′-bithiophene under Sonogashira conditions yielded ligand 2, and the heteroleptic ruthenium(II) complex [Ru(2)(tpy)][PF6]2 has been prepared and characterized. 相似文献
14.
Crystallographic report: Crystal structure of bis[dipyrido[3,2,‐a:2′,3′‐c]phenazine]lead(II)diiodide
The mononuclear lead(II) complex of formula [PbI2(DPPZ)2] (DPPZ = dipyrido[3,2,‐a:2′,3′‐c]phenazine) has two‐fold symmetry and features a distorted octahedral geometry for lead defined by an N4I2 donor set. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
15.
SookHyun Yoon JeeHoon Han ByungKun Kim HanNim Choi Won‐Yong Lee 《Electroanalysis》2010,22(12):1349-1356
Mesoporous films of platinized carbon nanotube–zirconia–Nafion composite have been used for the immobilization of tris(2,2′‐bipyridyl)ruthenium (II) (Ru(bpy)32+) on an electrode surface to yield a solid‐state electrogenerated chemiluminescence (ECL) sensor. The composite films of Pt–CNT–zirconia–Nafion exhibit much larger pore diameter (3.55 nm) than that of Nafion (2.82 nm) and thus leading to much larger ECL response for tripropylamine (TPA) because of the fast diffusion of the analyte within the films. Due to the conducting and electrocatalytic features of CNTs and Pt nanoparticles, their incorporation into the zirconia–Nafion composite films resulted in the decreased electron transfer resistance within the films. The present ECL sensor based on the Pt–CNT–zirconia–Nafion gave a linear response (R2=0.999) for TPA concentration from 3.0 nM to 1.0 mM with a remarkable detection limit (S/N=3) of 1.0 nM, which is much lower compared to those obtained with the ECL sensors based on other types of sol‐gel ceramic–Nafion composite films such as silica–Nafion and titania–Nafion. 相似文献
16.
In this work, four bimetallic Ru(II)–Ir(III) complexes with the general formula [(bpy)2Ru(bpm)Ir(C^N)2](PF6)3 (bpy = 2,2‐bipyridine, bpm = 2,2′‐bipyrimidine, C^N = 2‐phenylpyridinato ( 2 ), (2‐p‐tolyl)pyridinato ( 3 ), 2‐(2,4‐difluorophenyl)pyridinato ( 4 ), and 2‐thienylpyridinato ( 5 )) were synthesized. Complexes 2 – 5 were characterized by NMR spectroscopy, high‐resolution mass spectrometry, and elemental analysis. The structures of the complexes 2 and 4 were further confirmed by single‐crystal X‐ray diffraction analysis. All the complexes display strong absorption in the high‐energy UV region assigned to intraligand (IL) transitions, and the lower energy bands are ascribed to metal‐to‐ligand charge transfer (MLCT) transitions. The reduction and oxidation behavior of the complexes 2 – 5 were examined by cyclic voltammetry. Variation of the ligands on Ir(III) center resulted in significant changes in electrochemical properties. 相似文献
17.
J. A. Castro J. E. Vilasanchez J. Romero J. A. Garcia-Vazquez M. L. Duran A. Sousa E. E. Castellano J. Zukerman-Schpector 《无机化学与普通化学杂志》1992,612(6):83-88
The electrochemical oxidation of anodic nickel in acetonitrile solution containing both (a) a Schiff base HL derived from H-pyrrole-2-carbaldehyde and a substituted aniline, and (b) a nitrogen ligand (1, 10-phenanthroline (phen), 2,2′-bipyridine (bipy) or pyridine (py)) yielded the mixed complexes NiL2 · phen, NiL2 · bipy and NiL2 · (py)2. The crystal structure of 2,2′-bipyridine bis{2-[(phenyl)iminomethyl]pyrrolato}nickel(II) was determined by X ray diffraction. Crystals are triclinic space group P1 , with four molecules in the unit cell of dimensions a = 12.316(1), b = 13.169(4), c = 17.251(3) Å, α = 82.67(3)°, β = 83.66(1)° and γ = 87.34(2)°, and consist of monomeric molecules in which the central NiN6 unit has a distorted octahedral geometry. 相似文献
18.
Gema Marcelo Raquel de Francisco María Jos Gonzlez-lvarez Francisco Mendicuti 《Journal of photochemistry and photobiology. A, Chemistry》2008,200(2-3):114-125
Steady-state and time-resolved fluorescence techniques were used to study (R)- and (S)-[1,1′-binaphthalene]-2,2′-diol (1,1′-binaphthol or BINOL) dilute solutions of different polarity solvents, as well as their inclusion complexes with α- and βcyclodextrins (CDs) in water. BINOLs in dilute water solutions exhibited a surprisingly high fluorescence anisotropy that was explained as being due to the formation of fairly large order π–π stacking aggregates in aqueous polar media. Stoichiometries, formation constants and the changes of enthalpy and entropy upon inclusion were also obtained by measuring the variation of the fluorescence intensity with [CD] and temperature. Results agree with the formation of 1:1 stoichiometry complexes, but the association constants are rather low and very similar for both enantiomers. Molecular mechanic calculations in the presence of water were employed to study the formation of BINOL complexes with both α- and βCDs. For the most stable structures of any of the complexes only a small portion of the guests, in agreement with thermodynamics parameters and quenching experiments, penetrates inside the CD cavities. Driving forces for 1:1 inclusion processes may be dominated by non-bonded van der Waals host:guest interactions. The low guest:host binding constants and poor enantioselectivity of α- and βCDs for BINOLS may be a consequence of the BINOL aggregation in water. 相似文献
19.
Roser Pons Cristina Ibez Ana B. Buades Antonio Franconetti Angel Garcia‐Raso Juan J. Fiol Angel Terrn Elies Molins Antonio Frontera 《应用有机金属化学》2019,33(6)
We report the synthesis and X‐ray characterization of the N6‐benzyl‐N6‐methyladenine ligand (L) and three metal complexes, namely [Zn(HL)Cl3]·H2O ( 1 ), [Cd(HL)2Cl4] ( 2 ) and [H2L]2[Cd3(μ‐L)2(μ‐Cl)4Cl6]·3H2O ( 3 ). Complex 1 consists of the 7H‐adenine tautomer protonated at N3 and coordinated to a tetrahedral Zn(II) metal centre through N9. The octahedral Cd(II) in complex 2 is N9‐coordinated to two N6‐benzyl‐N6‐methyladeninium ligands (7H‐tautomer protonated at N3) that occupy apical positions and four chlorido ligands form the basal plane. Compound 3 corresponds to a trinuclear Cd(II) complex, where the central Cd atom is six‐coordinated to two bridging μ‐L and four bridging μ‐Cl ligands. The other two Cd atoms are six‐coordinated to three terminal chlorido ligands, to two bridging μ‐Cl ligands and to the bridging μ‐L through N3. Essentially, the coordination patterns, degree of protonation and tautomeric forms of the nucleobase dominate the solid‐state architectures of 1 – 3 . Additionally, the hydrogen‐bonding interactions produced by the endocyclic N atoms and NH groups stabilize high‐dimensional‐order supramolecular assemblies. Moreover, energetically strong anion–π and lone pair (lp)–π interactions are important in constructing the final solid‐state architectures in 1 – 3 . We have studied the non‐covalent interactions energetically using density functional theory calculations and rationalized the interactions using molecular electrostatic potential surfaces and Bader's theory of atoms in molecules. We have particularly analysed cooperative lp–π and anion–π interactions in 1 and π+–π+ interactions in 3 . 相似文献
20.
Long Tang Ji-Jiang Wang Feng Fu Sheng-Wen Wang Qi-Rui Liu 《Acta Crystallographica. Section C, Structural Chemistry》2016,72(2):128-132
With regard to crystal engineering, building block or modular assembly methodologies have shown great success in the design and construction of metal–organic coordination polymers. The critical factor for the construction of coordination polymers is the rational choice of the organic building blocks and the metal centre. The reaction of Zn(OAc)2·2H2O (OAc is acetate) with 3‐nitrobenzoic acid (HNBA) and 4,4′‐bipyridine (4,4′‐bipy) under hydrothermal conditions produced a two‐dimensional zinc(II) supramolecular architecture, catena‐poly[[bis(3‐nitrobenzoato‐κ2O,O′)zinc(II)]‐μ‐4,4′‐bipyridine‐κ2N:N′], [Zn(C7H4NO4)2(C10H8N2)]n or [Zn(NBA)2(4,4′‐bipy)]n, which was characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis and single‐crystal X‐ray diffraction analysis. The ZnII ions are connected by the 4,4′‐bipy ligands to form a one‐dimensional zigzag chain and the chains are decorated with anionic NBA ligands which interact further through aromatic π–π stacking interactions, expanding the structure into a threefold interpenetrated two‐dimensional supramolecular architecture. The solid‐state fluorescence analysis indicates a slight blue shift compared with pure 4,4′‐bipyridine and HNBA. 相似文献