首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The photodissociation dynamics of 3-bromo-1,1,1-trifluoro-2-propanol (BTFP) and 2-(bromomethyl) hexafluoro-2-propanol (BMHFP) have been studied at 234 nm, and the C-Br bond dissociation investigated using resonance-enhanced multiphoton ionization coupled with time-of-flight mass spectrometer (REMPI-TOFMS). Br formation is a primary process and occurs on a repulsive surface involving the C-Br bond of BTFP and BMHFP. Polarization dependent time-of-flight profiles were measured, and the translational energy distributions and recoil anisotropy parameters extracted using forward convolution fits. A strong polarization dependence of time-of-flight profiles suggest anisotropic distributions of the Br((2)P(3/2)) and Br((2)P(1/2)) fragments with anisotropy parameter, β, of respectively 0.5 ± 0.2 and 1.2 ± 0.2 for BTFP, and 0.4 ± 0.1 and 1.0 ± 0.3 for BMHFP. The measured velocity distributions consist of a single velocity component. The average translational energies for the Br((2)P(3/2)) and Br((2)P(1/2)) channels are 9.2 ± 1.0 and 7.4 ± 0.9 kcal/mol for BTFP, and 15.4 ± 1.8 and 15.1 ± 2.0 kcal/mol for BMHFP. The relative quantum yields of Br((2)P(3/2)) and Br((2)P(1/2)), which are 0.70 ± 0.14 and 0.30 ± 0.06 in BTFP and 0.81 ± 0.16 and 0.19 ± 0.04 in BMHFP, indicate that the yield of the former is predominant. The measured anisotropy parameters for the Br((2)P(3/2)) and Br((2)P(1/2)) channels suggest that the former channel has almost equal contributions from both the parallel and the perpendicular transitions, whereas the latter channel has a significant contribution from a parallel transition. Non-adiabatic curve crossing plays an important role in the C-Br bond dissociation of both BTFP and BMHFP. The estimated curve crossing probabilities suggest a greater value in BTFP, which explains a greater observed value of the relative quantum yield of Br((2)P(1/2)) in this case.  相似文献   

2.
The photodissociation dynamics of tert-C(4)H(9)Br and iso-C(4)H(9)Br has been studied at 234 and 265 nm using two-dimensional velocity map imaging technique. The translational energy and angular distributions have been analyzed for Br, Br(*), and tert-C(4)H(9) radical. The energy distribution of Br atom in the photodissociation of tert-C(4)H(9)Br is found to consist of two Gaussian components. The two components are correlated to two independent reaction paths on the excited potential energy surfaces: (1) the high-energy component from the prompt dissociation along the C-Br stretching mode and (2) the low-energy component from the repulsive mode along the C-Br stretching, coupled with some bending motions. For the energy distribution of Br(*) atom in the photodissociation of tert-C(4)H(9)Br, a third multiphoton dissociative ionization channel is observed at 265 nm in addition to the two energy components corresponding to channels (1) and (2). The energy distributions of Br and Br(*) atoms in the photodissociation of iso-C(4)H(9)Br can be fitted using only one Gaussian function indicating a single formation channel. Relative quantum yields for Br((2)P(32)) at 234 and 265 nm in the photodissociation of tert-C(4)H(9)Br are measured to be 0.76 and 0.65, respectively. For iso-C(4)H(9)Br, the measured value is Phi(234 nm)(Br)=0.81. The contribution of bending modes to Br and Br(*) is much more obvious in the photodissociation of tert-C(4)H(9)Br than in iso-C(4)H(9)Br.  相似文献   

3.
We report on the photodissociation dynamics of tert-pentyl bromide near 265 nm investigated by time-sliced velocity map imaging. The speed and angular distributions have been analyzed for both the ground-state Br((2)P(3∕2)) atom (denoted Br) and the spin-orbit excited-state Br((2)P(1∕2)) atom (denoted Br*). The speed distributions of Br and Br* atoms are all found to consist of three Gaussian components, which correlate to three independent dissociation pathways on the excited potential energy surfaces: (1) the high translational energy (E(T)) component from the prompt dissociation along the C-Br stretching mode, (2) the middle E(T) component from the repulsive mode along the C-Br stretching coupled with some bending motions, and (3) the low E(T) component from the repulsive mode along the C-Br stretching coupled with more bending motions. More interestingly, we have also observed the tert-C(5)H(11)(+) ions in 263-267 nm. The near-zero kinetic energy distributions extracted from the three tert-C(5)H(11)(+) images near 265 nm show the typical characteristics that are attributable to multiphoton dissociative ionization, suggesting the existence of a neutral superexcited state of the parent tert-pentyl bromide molecule. The contribution of bromine atoms formed in this dissociative ionization channel adds in the total relative distribution of low E(T) component in the Br*(Br) formation channel, which reasonably explains the abnormal distributions observed in between the middle and low E(T) components in the Br*(Br) formation channel.  相似文献   

4.
The photodissociation dynamics of CH(2)Br(2) was investigated near 234 and 267 nm. A two-dimensional photofragment ion velocity imaging technique coupled with a [2+1] resonance-enhanced multiphoton (REMPI) ionization scheme was utilized to obtain the angular and translational energy distributions of the nascent Br ((2)P(3/2)) and Br* ((2)P(1/2)) atoms. The obtained translational energy distributions of Br and Br* are found consist of two components which should be come from the radical channel and secondary dissociation process, respectively. It is suggested that the symmetry reduction from C(2v) to C(s) during photodissociation invokes a non-adiabatic coupling between the 2B(1) and A(1) states. Consequently, the higher internal energy distribution of Br channel than Br* formation channel and the broader translational energy distribution of the former are presumed correlate with a variety of vibrational excitation disposal at the crossing point resulting from the larger non-adiabatic crossing from 2B(1) to A(1) state than the reverse crossing. Moreover, the measured anisotropy parameter beta indicate that fragments recoil along the Br-Br direction mostly in the photodissociation.  相似文献   

5.
The photodissociation of ethyl bromide has been studied in the wavelength range of 231-267 nm by means of the ion velocity imaging technique coupled with a [2+1] resonance-enhanced multiphoton ionization (REMPI) scheme. The velocity distributions for the Br ((2)P(1/2)) (denoted Br*) and Br ((2)P(3/2)) (denoted Br) fragments are determined, and each can be well-fitted by a narrow single-peaked Gaussian curve, which suggests that the bromine fragments are generated as a result of direct dissociation via repulsive potential-energy surfaces (PES). The recoil anisotropy results show that beta(Br) and beta(Br*) decrease with the wavelength, and the angular distributions of Br* suggest a typical parallel transition. The product relative quantum yields at two different wavelengths are Phi(234nm)(Br*)=0.17 and Phi(267nm)(Br*)=0.31. The relative fractions of each potential surface for the bromine fragments' production at 234 and 267 nm reveal the existence of a curve crossing between the (3)Q(0) and (1)Q(1) potential surfaces, and the probability of curve crossing decreases with the laser wavelength. The symmetry reduction of C(2)H(5)Br from C(3v) to C(s) invokes a nonadiabatic coupling between the (3)Q(0) and (1)Q(1) states, and with higher energy photons, the probability that crossing will take place increases.  相似文献   

6.
We report Cl((2)P(3/2)) and Cl*((2)P(1/2)) fragment images following ClN(3) photolysis in the 234-280 nm region measured by velocity map imaging. Kinetic energy distributions change shape with photolysis wavelength from bimodal at 234 and 240 nm to single peak at 266 and 280 nm. Where two peaks exist, their ratio is significantly different for Cl and Cl* fragments. The single peak of 266 and 280 nm and the faster peak at 234 and 240 nm are assigned to a Cl + linear-N(3) dissociation channel, in agreement with previous work. The slow peak in the bimodal distributions is assigned to the formation of a high energy form (HEF) of N(3). Candidates for the identity of HEF-N(3) are discussed. Combining our data with photofragmentation translational spectroscopy results, we determined the threshold for the appearance of HEF-N(3) at 4.83 +/- 0.17 eV photolysis energy. This threshold behavior is similar to recently reported results on the wavelength dependence of HN(3) photolysis, where the threshold was associated with a ring closed isomer of HN(3) on the S(1) potential energy surface. We also note that the HEF-N(3) formation threshold observed for ClN(3) occurs where the energy available to the products equals the isomerization barrier from linear to cyclic-N(3).  相似文献   

7.
Femtosecond time-resolved soft x-ray transient absorption spectroscopy based on a high-order harmonic generation source is used to investigate the dissociative ionization of CH(2)Br(2) induced by 800 nm strong-field irradiation. At moderate laser peak intensities (2.0 x 10(14) Wcm(2)), strong-field ionization is accompanied by ultrafast C-Br bond dissociation, producing both neutral Br ((2)P(32)) and Br(*) ((2)P(12)) atoms together with the CH(2)Br(+) fragment ion. The measured rise times for Br and Br(*) are 130+/-22 fs and 74+/-10 fs, respectively. The atomic bromine quantum state distribution shows that the BrBr(*) population ratio is 8.1+/-3.8 and that the Br (2)P(32) state is not aligned. The observed product distribution and the time scales of the photofragment appearances suggest that multiple field-dressed potential energy surfaces are involved in the dissociative ionization process. At higher laser peak intensities (6.2 x 10(14) Wcm(2)), CH(2)Br(2) (+) undergoes sequential ionization to form the metastable CH(2)Br(2) (2+) dication. These results demonstrate the potential of core-level probing with high-order harmonic transient absorption spectroscopy for studying ultrafast molecular dynamics.  相似文献   

8.
The photodissociation dynamics of 2-bromobutane has been investigated at 264.77 and 264.86 nm by ion-velocity map imaging technique coupled with resonance-enhanced multi-photon ionization. The speed and angular distributions have been derived from the velocity map images of Br and Br*. The speed distributions of Br and Br* atoms in the photodis-sociation of 2-bromobutane at ~265 nm can be fitted using only one Gaussian function indicating that bromine fragments were produced via direct dissociation of C-Br bond. Thecontributions of the excited 3Q0, 3Q1, and 1Q1 states to the products (Br and Br*) were discussed. It is found that the nonadiabatic 1Q13Q0 transition plays an important role for Br photofragment in the dissociation of 2-C4H9Br at ~265 nm. Relative quantum yield of 0.621 for Br(2P3/2) at ~265 nm in the photodissociation of 2-bromobutane is derived. By comparing the photodissociation of 2-C4H9Br at ~265 nm and that that at ~234 nm, the anisotropy parameter β(Br) and β(Br*), and relative quantum yield ?(Br) decrease with increasing wavelength, the probability of curve crossing between 3Q0 and 1Q1 decreases with increasing laser wavelength.  相似文献   

9.
The photodissociation dynamics of allyl chloride at 235 nm producing atomic Cl((2)P(J);J=1/2,3/2) fragments is investigated using a two-dimensional photofragment velocity ion imaging technique. Detection of the Cl((2)P(1/2)) and Cl((2)P(3/2)) products by [2+1] resonance enhanced multiphoton ionization shows that primary C-Cl bond fission of allyl chloride generates 66.8% Cl((2)P(3/2)) and 33.2% Cl((2)P(1/2)). The Cl((2)P(3/2)) fragments evidenced a bimodal translational energy distribution with a relative weight of low kinetic energy Cl((2)P(3/2))/high kinetic energy Cl((2)P(3/2)) of 0.097/0.903. The minor dissociation channel for C-Cl bond fission, producing low kinetic energy chlorine atoms, formed only chlorine atoms in the Cl((2)P(3/2)) spin-orbit state. The dominant C-Cl bond fission channel, attributed to an electronic predissociation that results in high kinetic energy Cl atoms, produced both Cl((2)P(1/2)) and Cl((2)P(3/2)) atomic fragments. The relative branching for this dissociation channel is Cl((2)P(1/2))/[Cl((2)P(1/2))+Cl((2)P(3/2))]=35.5%. The average fraction of available energy imparted into product recoil for the high kinetic energy products was found to be 59%, in qualitative agreement with that predicted by a rigid radical impulsive model. Both the spin-orbit ground and excited chlorine atom angular distributions were close to isotropic. We compare the observed Cl((2)P(1/2))/[Cl((2)P(1/2))+Cl((2)P(3/2))] ratio produced in the electronic predissociation channel of allyl chloride with a prior study of the chlorine atom spin-orbit states produced from HCl photodissociation, concluding that angular momentum recoupling in the exit channel at long interatomic distance determines the chlorine atom spin-orbit branching.  相似文献   

10.
The photodissociation of 1,3-dibromopropane has been studied at 234 nm using a 2D photofragment ion velocity imaging technique coupled with a [2 + 1] resonance-enhanced multiphoton ionization scheme. The velocity distributions for the Br (2P1/2) (denoted Br) and Br (2P3/2) (denoted Br) fragments are determined, and each can be fitted by a narrow single-peaked Gaussian curve, suggesting that bromine fragments are generated as a result of direct dissociation via repulsive potential energy surfaces. The recoil anisotropies were measured to be beta = 0.80 for Br and 1.31 for Br, and the product relative quantum yields at 234 nm is Phi234 nm(Br) = 0.21.  相似文献   

11.
利用离子速度影像技术结合共振增强多光子电离(REMPI)技术, 研究了邻溴甲苯在234和267 nm激光作用下的光解机理. 平动能分布表明, 基态Br(2P3/2)和自旋轨道激发态Br*(2P1/2)产生于两个解离通道: 快通道和慢通道. 快通道的各向异性参数在234 nm分别为1.15(Br)和0.55(Br*), 在267 nm分别为0.90(Br)和0.60(Br*). 慢通道的各向异性参数在234 nm分别为0.12(Br)和0.14(Br*), 在267 nm分别为0.11(Br)和0.10(Br*). 源自于慢通道的Br和Br*碎片的各向异性弱于快通道. Br(2P3/2)的相对量子产率Φ(Br)在234 nm为0.67, 在267 nm为0.70. 邻溴甲苯在234 和267 nm光解主要产生基态产物Br(2P3/2). 快通道产生于(π, π*)束缚单重态被激发, 随后通过排斥性(n, σ*)态的预解离. 慢通道各向异性参数接近零, 由此证实慢通道来源于单重激发态内转换到高振动基态而引发的热解离.  相似文献   

12.
The photodissociation dynamics of 2-bromobutane has been investigated at 233.62 and 233.95 nm by ion-velocity map imaging technique coupled with resonance-enhanced mul-tiphoton ionization. The speed and angular distribution of Br and Br* fragments were determined from the map images. The two Gaussian components, shown in the speed dis-tributions of Br and Br* atoms, are suggested to attribute to the two independent reaction paths of photodissociation for 2-bromobutane at 233.62 and 233.95 nm. The high-energy component is related to the prompt dissociation along the C-Br stretching mode, and the low-energy component to the dissociation from the repulsive mode with bending and C-Br stretching combination. The contributions of the excited 3Q0, 3Q1, and 1Q1 states to the products (Br and Br*) were discussed. Relative quantum yield of 0.924 for Br(2P3/2) at about 234 nm in the photodissociation of 2-bromobutane is derived.  相似文献   

13.
The photodissociation of gas-phase I(2)Br(-) was investigated using fast beam photofragment translational spectroscopy. Anions were photodissociated from 300 to 270 nm (4.13-4.59 eV) and the recoiling photofragments were detected in coincidence by a time- and position-sensitive detector. Both two- and three-body channels were observed throughout the energy range probed. Analysis of the two-body dissociation showed evidence for four distinct channels: Br(-) + I(2), I(-) + IBr, Br+I(2) (-), and I + IBr(-). In three-body dissociation, Br((2)P(3∕2)) + I((2)P(3∕2)) + I(-) and Br(-) + I((2)P(3∕2)) + I((2)P(3∕2)) were produced primarily from a concerted decay mechanism. A sequential decay mechanism was also observed and attributed to Br(-)((1)S)+I(2)(B(3)Π(0u) (+)) followed by predissociation of I(2)(B).  相似文献   

14.
2-溴噻吩和3-溴噻吩在267 nm的C-Br键解离机理   总被引:2,自引:2,他引:0  
利用离子速度影像技术, 研究了2-溴噻吩和3-溴噻吩两种同分异构体在267 nm激光作用下的C—Br键解离机理, 获得了光解产物Br(2P3/2)和Br*(2P1/2)的能量和角度分布, 分析了两异构分子在267 nm 的C—Br键解离通道. 对于2-溴噻吩和3-溴噻吩, 产物Br来源于三个通道: (i) 从单重激发态系间窜跃到排斥的三重激发态的快速预解离; (ii)单重激发态内转化到高振动基态的热解离; (iii) 母体分子多光子电离后的解离. 2-溴噻吩的产物Br*具有类似的产生机制; 但对于3-溴噻吩, 从激发态内转换到高振动基态发生热解离成为产物Br*的主导通道, 而来自激发三重态的快速预解离通道则几乎消失. 定量地给出了各个通道的相对贡献、能量分配及各向异性分布信息. 实验发现, 随着溴原子在噻吩上取代位置远离硫原子, 来自通道(i)和(ii)产物之间的比例明显减小, 相应的各向异性分布有变弱趋势.  相似文献   

15.
Velocity imaging technique combined with (2 + 1) resonance-enhanced multiphoton ionization (REMPI) has been used to detect the Br fragment in photodissociation of o-, m-, and p-bromofluorobenzene at 266 nm. The branching ratio of ground state Br(2P3/2) is found to be larger than 96%. Its translational energy distributions suggest that the Br fragments are generated via two dissociation channels for all the molecules. The fast route, which is missing in p-bromofluorobenzene detected previously by femtosecond laser spectroscopy, giving rise to an anisotropy parameter of 0.50-0.65, is attributed to a direct dissociation from a repulsive triplet T1(A' ') or T1(B1) state. The slow one with anisotropy parameter close to zero is proposed to stem from excitation of the lowest excited singlet (pi,pi*)state followed by predissociation along a repulsive triplet (pi,sigma*) state localized on the C-Br bond. For the minor product of spin-orbit excited state Br(2P1/2), the dissociating features are similar to those found in Br(2P3/2). Our kinetic and anisotropic features of decomposition obtained in m- and p-bromofluorobenzene are opposed to those by photofragment translational spectroscopy. Discrepancy between different methods is discussed in detail.  相似文献   

16.
This study investigates the 234 nm photodissociation dynamics of cyclobutyl bromide using a two-dimensional photofragment velocity imaging technique. The spin-orbit ground- and excited-state Br(2P) atoms are state-selectively detected via [2+1] resonance enhanced multiphoton ionization (REMPI), whereas the cyclobutyl radicals are ionized using 157 nm laser light. The Br(2P(3/2)) and the Br(2P(1/2)) atoms and their c-C4H7 radical cofragments evidence a single-peaked, Gaussian-shaped translational energy distribution ranging from approximately 14 to approximately 39 kcal/mol and angular distributions with significant parallel character. The Br(2P(1/2))/ Br(2P(3/2)) spin-orbit branching ratio is determined to be 0.11 +/- 0.07 by momentum match between the Br(2P) photofragments and the recoiling c-C4H7 fragments, assuming a uniform photoionization probability of the c-C4H7 radicals with an internal energy range of 10-35 kcal/mol. The REMPI line strength ratio for the detection of Br(2P(3/2)) and Br(2P(1/2)) atoms at 233.681 and 234.021 nm, respectively, is therefore derived to be 0.10 +/- 0.07. The measured recoil kinetic energies of the c-C4H7 radicals, and the resulting distribution of internal energies, indicates some of the radicals are formed with total internal energies above the barrier to isomerization and subsequent dissociation, but our analysis indicates they may be stable due to the substantial fraction of the internal energy which is partitioned to rotational energy of the radicals.  相似文献   

17.
The orientation and alignment of the (2)P(3/2) and (2)P(1/2) Br photofragments from the photodissociation of HBr is measured at 193 nm in terms of a(q) ((k))(p) parameters, using slice imaging. The A (1)Pi state is excited almost exclusively, and the measured a(q) ((k))(p) parameters and the spin-orbit branching ratio show that the dissociation proceeds predominantly via nonadiabatic transitions to the a (3)Pi and 1 (3)Sigma(+) states. Conservation of angular momentum shows that the electrons of the nascent H atom cofragments (recoiling parallel to the photolysis polarization) are highly spin polarized: about 100% for the Br((2)P(1/2)) channel, and 86% for the Br((2)P(3/2)) channel. A similar analysis is demonstrated for the photodissociation of HCl.  相似文献   

18.
A recent review (Ashfold et al., Phys. Chem. Chem. Phys., 2010, 12, 1218) highlighted the important role of dissociative excited states formed by electron promotion to σ* orbitals in establishing the photochemistry of many molecular hydrides. Here we extend such considerations to molecular halides, with a particular focus on iodobenzene. Two experimental techniques (velocity mapped ion imaging (VMI) and time resolved infrared (IR) diode laser absorption) and electronic structure calculations have been employed in a comprehensive study of the near ultraviolet (UV) photodissociation of gas phase iodobenzene molecules. The VMI studies yield the speeds and angular distributions of the I((2)P(3/2)) and I*((2)P(1/2)) photofragments formed by photolysis in the wavelength range 330 ≥λ≥ 206 nm. Four distinct dissociation channels are observed for the I((2)P(3/2)) atom products, and a further three channels for the I*((2)P(1/2)) fragments. The phenyl (Ph) radical partners formed via one particular I* product channel following excitation at wavelengths 305 ≥λ≥ 250 nm are distributed over a sufficiently select sub-set of vibrational (v) states that the images allow resolution of specific I* + Ph(v) channels, identification of the active product mode (ν(10), an in-plane ring breathing mode), and a refined determination of D(0)(Ph-I) = 23,390 ± 50 cm(-1). The time-resolved IR absorption studies allow determination of the spin-orbit branching ratio in the iodine atom products formed at λ = 248 nm (?(I*) = [I*]/([I] + [I*]) = 0.28 ± 0.04) and at 266 nm (?(I*) = 0.32 ± 0.05). The complementary high-level, spin-orbit resolved ab initio calculations of sections (along the C-I bond coordinate) through the ground and first 19 excited state potential energy surfaces (PESs) reveal numerous excited states in the energy range of current interest. Except at the very shortest wavelength, however, all of the observed I and I* products display limiting or near limiting parallel recoil anisotropy. This encourages discussion of the fragmentation dynamics in terms of excitation to states of A(1) total symmetry and dissociation on the 2A(1) and 4A(1) (σ* ← n/π) PESs to yield, respectively, I and I* products, or via non-adiabatic coupling to other σ* ← n/π PESs that correlate to these respective limits. Similarities (and differences) with the available UV photochemical data for the other aryl halides, and with the simpler (and more thoroughly studied) iodides HI and CH(3)I, are summarised.  相似文献   

19.
This work characterizes the internal energy distribution of the CD(2)CD(2)OH radical formed via photodissociation of 2-bromoethanol-d(4). The CD(2)CD(2)OH radical is the first radical adduct in the addition of the hydroxyl radical to C(2)D(4) and the product branching of the OH + C(2)D(4) reaction is dependent on the total internal energy of this adduct and how that energy is partitioned between rotation and vibration. Using a combination of a velocity map imaging apparatus and a crossed laser-molecular beam scattering apparatus, we photodissociate the BrCD(2)CD(2)OH precursor at 193 nm and measure the velocity distributions of the Br atoms, resolving the Br((2)P(1/2)) and Br((2)P(3/2)) states with [2 + 1] resonance enhanced multiphoton ionization (REMPI) on the imaging apparatus. We also detect the velocity distribution of the subset of the nascent momentum-matched CD(2)CD(2)OH cofragments that are formed stable to subsequent dissociation. Invoking conservation of momentum and conservation of energy and a recently developed impulsive model, we determine the vibrational energy distribution of the nascent CD(2)CD(2)OH radicals from the measured velocity distributions.  相似文献   

20.
The photodissociation dynamics of vinyl bromide and perfluorovinyl bromide have been investigated at 234 nm using a photofragment ion imaging technique coupled with a state-selective [2+1] resonance-enhanced multiphoton ionization scheme. The nascent Br atoms stem from the primary C-Br bond dissociation leading to the formation of C2H3(X) and Br(2Pj;j=1/2,3/2). The obtained translational energy distributions have been well fitted by a single Boltzmann and three Gaussian functions. Boltzmann component has not been observed in the perfluorovinyl bromide. The repulsive 3A'(n,sigma *) state has been considered as the origin of the highest Gaussian components. Middle translational energy components with Gaussian shapes are produced from the 1A"(pi,sigma*) and/or 3A"(pi,sigma*) which are very close in energy. Low-energy Gaussian components are produced via predissociation from the 3A'(pi,pi*) state. The assignments have also been supported by the recoil anisotropy corresponding to the individual components. It is suggested that intersystem crossing from the triplet states to the ground state has been attributed to the Boltzmann component and the fluorination reduces the probability of this electronic relaxation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号