首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Primary free radical formations in fructose single crystals X-irradiated at 10 K were investigated at the same temperature using X-band Electron Paramagnetic Resonance (EPR), Electron Nuclear Double Resonance (ENDOR) and ENDOR induced EPR (EIE) techniques. ENDOR angular variations in the three principal crystallographic planes and a fourth skewed plane allowed the unambiguous determination of five proton hyperfine coupling tensors. From the EIE studies, these hyperfine interactions were assigned to three different radicals, labeled T1, T1* and T2. For the T1 and T1* radicals, the close similarity in hyperfine coupling tensors suggests that they are due to the same type of radical stabilized in two slightly different geometrical conformations. Periodic density functional theory calculations were used to aid the identification of the structure of the radiation-induced radicals. For the T1/T1* radicals a C3 centered hydroxyalkyl radical model formed by a net H abstraction is proposed. The T2 radical is proposed to be a C5 centered hydroxyalkyl radical, formed by a net hydrogen abstraction. For both radicals, a very good agreement between calculated and experimental hyperfine coupling tensors was obtained.  相似文献   

2.
The radicals obtained in trehalose dihydrate single crystals after 77 K X-irradiation have been investigated at the same temperature using X-band electron paramagnetic resonance (EPR), electron nuclear double resonance (ENDOR), and ENDOR-induced EPR (EIE) techniques. Five proton hyperfine coupling tensors were unambiguously determined from the ENDOR measurements and assigned to three carbon-centered radical species (T1, T1*, and T2) based on the EIE spectra. EPR angular variations revealed the presence of four additional alkoxy radical species (T3 to T6) and allowed determination of their g tensors. Using periodic density functional theory (DFT) calculations, T1/T1*, T2, and T3 were identified as H-loss species centered at C4, C1', and O2', respectively. The T4 radical is proposed to have the unpaired electron at O4, but considerable discrepancies between experimental and calculated HFC values indicate it is not simply the (net) H-loss species. No suitable models were found for T5 and T6. These exhibit a markedly larger g anisotropy than T3 and T4, which were not reproduced by any of our DFT calculations.  相似文献   

3.
Stable free radical formation in fructose single crystals X-irradiated at room temperature was investigated using Q-band electron paramagnetic resonance (EPR), electron nuclear double resonance (ENDOR), and ENDOR induced EPR (EIE) techniques. ENDOR angular variations in the three main crystallographic planes allowed an unambiguous determination of 12 proton HFC tensors. From the EIE studies, these hyperfine interactions were assigned to six different radical species, labeled F1-F6. Two of the radicals (F1 and F2) were studied previously by Vanhaelewyn et al. [Vanhaelewyn, G. C. A. M.; Pauwels, E.; Callens, F. J.; Waroquier, M.; Sagstuen, E.; Matthys, P. J. Phys. Chem. A 2006, 110, 2147.] and Tarpan et al. [Tarpan, M. A.; Vrielinck, H.; De Cooman, H.; Callens, F. J. J. Phys. Chem. A 2009, 113, 7994.]. The other four radicals are reported here for the first time and periodic density functional theory (DFT) calculations were used to aid their structural identification. For the radical F3 a C3 carbon centered radical with a carbonyl group at the C4 position is proposed. The close similarity in HFC tensors suggests that F4 and F5 originate from the same type of radical stabilized in two slightly different conformations. For these radicals a C2 carbon centered radical model with a carbonyl group situated at the C3 position is proposed. A rather exotic C2 centered radical model is proposed for F6.  相似文献   

4.
Primary free radical formation in trehalose dihydrate single crystals X-irradiated at 10 K was investigated at the same temperature using X-band Electron Paramagnetic Resonance (EPR), Electron Nuclear Double Resonance (ENDOR) and ENDOR-induced EPR (EIE) techniques. The ENDOR results allowed the unambiguous determination of six proton hyperfine coupling (HFC) tensors. Using the EIE technique, these HF interactions were assigned to three different radicals, labeled R1, R2 and R3. The anisotropy of the EPR and EIE spectra indicated that R1 and R2 are alkyl radicals (i.e. carbon-centered) and R3 is an alkoxy radical (i.e. oxygen-centered). The EPR data also revealed the presence of an additional alkoxy radical species, labeled R4. Molecular modeling using periodic Density Functional Theory (DFT) calculations for simulating experimental data suggests that R1 and R2 are the hydrogen-abstracted alkyl species centered at C5' and C5, respectively, while the alkoxy radicals R3 and R4 have the unpaired electron localized mainly at O2 and O4'. Interestingly, the DFT study on R4 demonstrates that the trapping of a transferred proton can significantly influence the conformation of a deprotonated cation. Comparison of these results with those obtained from sucrose single crystals X-irradiated at 10 K indicates that the carbon situated next to the ring oxygen and connected to the CH(2)OH hydroxymethyl group is a better radical trapping site than other positions.  相似文献   

5.
X-irradiated single crystals of sodium inosine (Na(+)*Inosine(-)*2.5H(2)O), in which the hypoxanthine base is present as the N1-deprotonated anion, were investigated using K-band (24 GHz) electron paramagnetic resonance (EPR), electron-nuclear double resonance (ENDOR), and ENDOR induced EPR (EIE) techniques at 10 K. At least five different radicals were present immediately after irradiation at 10 K. R1, which decayed upon warming the crystals to 50 K, was identified as the electron-loss product of the parent N1-deprotonated hypoxanthine base. Hyperfine couplings to HC8 and HC2 were fully characterized with ENDOR spectroscopy, and the identification was supported by DFT calculations. R2, which also decayed on warming to 50 K, exhibited nearly equal couplings to HC2 and HC8. Taken in combination with an extensive set of DFT calculations, the experimental results indicate that R2 is the (doubly negative) product of electron-gain by the initially anionic N1-deprotonated hypoxanthine parent. R3, which exhibited hyperfine coupling only to HC8 could not be identified. R4, which persisted on annealing to 260 K, exhibited one large alpha-proton hyperfine coupling which was fully characterized by ENDOR. Based on DFT calculations and the experimental data, R4 was identified as the product of net H-abstraction from C5'. The remaining HC5' was the source of the measured alpha-proton coupling. R5, present at low temperature and the only observable radical after warming the crystals to room temperature, was identified as the C8-H addition radical. The alpha-coupling to HC2 and beta-couplings to the pair of C8 methlyene protons were fully characterized by ENDOR.  相似文献   

6.
Pulsed electron nuclear double resonance (ENDOR) and two-dimensional (2D)-hyperfine sublevel correlation spectroscopy (HYSCORE) studies in combination with density functional theory (DFT) calculations revealed that photo-oxidation of natural zeaxanthin (ex Lycium halimifolium) and violaxanthin (ex Viola tricolor) on silica-alumina produces the carotenoid radical cations (Car*+) and also the neutral carotenoid radicals (#Car*) as a result of proton loss (indicated by #) from the C4(4') methylene position or one of the methyl groups at position C5(5'), C9(9'), or C13(13'), except for violaxanthin where the epoxide at positions C5(5')-C6(6') raises the energy barrier for proton loss, and the neutral radicals #Car*(4) and #Car*(5) are not observed. DFT calculations predict the largest isotropic beta-methyl proton hyperfine couplings to be 8 to 10 MHz for Car*+, in agreement with previously reported hyperfine couplings for carotenoid pi-conjugated radicals with unpaired spin density delocalized over the whole molecule. Anisotropic alpha-proton hyperfine coupling tensors determined from the HYSCORE analysis were assigned on the basis of DFT calculations with the B3LYP exchange-correlation functional and found to arise not only from the carotenoid radical cation but also from carotenoid neutral radicals, in agreement with the analysis of the pulsed ENDOR data. The formation of the neutral radical of zeaxanthin should provide another effective nonphotochemical quencher of the excited state of chlorophyll for photoprotection in the presence of excess light.  相似文献   

7.
Gamma radiation of poly (lactide-co-glycolide) raw polymers and processed microspheres under vacuum and at 77 K results in the formation of a series of free radicals. The resulting powder electron paramagnetic resonance (EPR) spectrum contains a distribution of several different radicals, depending on the annealing temperature, and is therefore difficult to interpret. By utilising the selectivity of the electron nuclear DOuble resonance (ENDOR) and associated ENDOR induced EPR (EIE) techniques, a more direct approach for the deconvolution of the EPR spectrum can be achieved. Using this approach, the radiolytically induced CH3 *CHC(O)R- chain scission radical was identified at 120 K by simulation of the EIE spectrum. At elevated temperatures (250 K), this radical decays considerably and the more stable radicals -O*CHC(O)-, CH3 *C(OR)C(O)- and CH3 *C(OH)C(O)- predominate. This work demonstrates the utility of the EIE approach to supplement and aid the interpretation of powder EPR spectra of radicals in a polymer matrix.  相似文献   

8.
Photopolymerization of methacrylic monomers yields samples with trapped radicals that are easily detected by electron paramagnetic resonance (EPR) spectroscopy. Despite its simplicity, there is no general agreement about the interpretation of this spectrum, in particular, about the role of methylene β protons. An extensive ENDOR study of the propagating radical in photopolymerized dimethacrylates has been carried out in order to obtain detailed information about methylene hyperfine couplings and, thus, about radical conformation. It is shown that literature models are not able to reproduce the ENDOR results and that only accurate fitting of ENDOR spectra obtained by saturating the EPR spectrum at different positions gives reliable information about radical conformation, thanks to the exploitation of conformational selectivity. It turns out that most radicals are in the minimum energy conformation, but any possible conformation is assumed by non negligible fractions of radical.  相似文献   

9.
Single crystals of the phosphorylated amino acid L-O-serine phosphate were X-irradiated and studied at 10 K and at 77 K using EPR, ENDOR, and EIE techniques. Two radicals, R1(10 K) and R1(77 K), were detected and characterized as two different geometrical conformations of the protonated reduction product >CH-C(OH)(2). R1(10 K) is only observed after irradiation at 10 K, and upon heating to 40 K, R1(10 K) transforms rapidly and irreversibly into R1(77 K). The transition from R1(10 K) to R1(77 K) strongly increases the isotropic hyperfine coupling of the C-CH(beta) coupling (Delta = 32 MHz) and the major C-OH(beta) coupling (Delta = 47 MHz), in sharp contrast to the their much reduced anisotropic hyperfine couplings after the transition. An umbrella-like inversion of the carboxylic acid center, accompanied by minor geometrical adjustments, explains the changes of these observed isotropic and anisotropic couplings. DFT calculations were done on the reduced and protonated L-O-serine phosphate radical at the B3LYP/6-311+G(2df,p)//B3LYP/6-31+G(d) level of theory in order to support the experimental observations. Two different conformations of the anion radical, related by an inversion at the carboxylic center, could be found within the single molecule partial energy-optimization scheme. These two conformations reproduce the experimental hyperfine couplings from radicals R1(10 K) and R1(77 K). A third radical, radical R2, was observed experimentally at both 10 and 77 K and was shown to be due to the decarboxylated L-O-serine phosphate oxidation product, a conclusion fully supported from the DFT calculations. Upon thermal annealing from 77 to 295 K, radicals R1(77 K) and R2 disappeared and all three previously observed room-temperature radicals could be observed. No phosphate-centered radicals could be observed at any temperatures, indicating that the phosphate-ester bond break for one of the room-temperature radicals does not occur by dissociative electron capture at the phosphate group.  相似文献   

10.
Electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) study of hypoxanthine.HCl.H(2)O crystals irradiated at low temperatures (10 K) identified three radical species. In these crystals, the parent molecules exist in a cationic form with a proton at N7. R1 was the product of net hydrogen addition to N3 and exhibited alpha-proton hyperfine couplings to HC2, HN1, HC8, and HN3. The coupling to HC2 has an isotropic component smaller than usual, evidently an indication that the bonds to C2 are nonplanar. R2 was the product of net hydrogen loss from N7, equivalent to the one-electron oxidation product of neutral hypoxanthine, and exhibited alpha-proton hyperfine couplings to HC2 and HC8. Both couplings are characteristic of planar bonding arrangements at the centers of spin. R3 was provisionally identified as the product of net hydrogen addition to O6 and exhibited hyperfine alpha-proton couplings to HC8 and NH1. To identify the set of radicals, the experiments employed four crystal types: normal, deuterated only at NH positions, deuterated at HC8 and NH positions, and deuterated at HC8 only. The low-temperature data also showed clear evidence for H/D isotope effects in formation and/or stabilization of all radicals. To aid and support the identifications, the experimental results were compared to DFT calculations performed on a variety of radical structures plausible for the parent molecule and molecular packing within the crystal.  相似文献   

11.
As shown from the crystal structure, the oxygen atom of Ph3P=CH---C(O)CH3 forms both intra and intermolecular hydrogen bonds. X-irradiation of this compounds produces a room-temperature-stable radical which was studied by single crystal EPR/ENDOR spectroscopy. Comparison of the experimental hyperfine couplings with those obtained from ab initio calculations shows that the radical cation Ph3P+---CH=C(OH)CH2 is formed under radiolysis. The principal directions of the hyperfine tensors indicate that, in this process, some of the hydrogen bonds are broken and that the radical undergoes a drastic reorientation around the Ph3P---C bond.  相似文献   

12.
The regulatory H2-sensing [NiFe] hydrogenase of the beta-proteobacterium Ralstonia eutropha displays an Ni-C "active" state after reduction with H2 that is very similar to the reduced Ni-C state of standard [NiFe] hydrogenases. Pulse electron nuclear double resonance (ENDOR) and four-pulse ESEEM (hyperfine sublevel correlation, HYSCORE) spectroscopy are applied to obtain structural information on this state via detection of the electron-nuclear hyperfine coupling constants. Two proton hyperfine couplings are determined by analysis of ENDOR spectra recorded over the full magnetic field range of the EPR spectrum. These are associated with nonexchangeable protons and belong to the beta-CH(2) protons of a bridging cysteine of the NiFe center. The signals of a third proton exhibit a large anisotropic coupling (Ax = 18.4 MHz, Ay = -10.8 MHz, Az = -18 MHz). They disappear from the 1H region of the ENDOR spectra after exchange of H2O with 2H2O and activation with 2H2 instead of H2 gas. They reappear in the 2H region of the ENDOR and HYSCORE spectra. Based on a comparison with the spectroscopically similar [NiFe] hydrogenase of Desulfovibrio vulgaris Miyazaki F, for which the g-tensor orientation of the Ni-C state with respect to the crystal structure is known (Foerster et al. J. Am. Chem. Soc. 2003, 125, 83-93), an assignment of the 1H hyperfine couplings is proposed. The exchangeable proton resides in a bridging position between the Ni and Fe and is assigned to a formal hydride ion. After illumination at low temperature (T = 10 K), the Ni-L state is formed. For the Ni-L state, the strong hyperfine coupling observed for the exchangeable hydrogen in Ni-C is lost, indicating a cleavage of the metal-hydride bond(s). These experiments give first direct information on the position of hydrogen binding in the active NiFe center of the regulatory hydrogenase. It is proposed that such a binding situation is also present in the active Ni-C state of standard hydrogenases.  相似文献   

13.
Four radiation-induced carbon-centered radicals in dipotassium glucose-1-phosphate dihydrate single crystals are examined with DFT methods, consistently relying on a periodic computational scheme. Starting from a set of plausible radical models, EPR hyperfine coupling tensors are calculated for optimized structures and compared with data obtained from EPR/ENDOR measurements, which are described in part I of this work. In this way, an independent structural identification is made of all the radicals that were observed in the experiments (R1-R4) and tentative reaction schemes are proposed. Also, the first strong evidence for conformational freedom in sugar radicals is established: two species are found to have the same chemical composition but different conformations and consequently different hyperfine coupling tensors. Analysis of the calculated energies for all model compounds suggests that the radiation chemistry of sugars, in general, is kinetically and not necessarily thermodynamically controlled.  相似文献   

14.
With K-band EPR (Electron Paramagnetic Resonance), ENDOR (Electron-Nuclear DOuble Resonance), and EIE (ENDOR-induced EPR) techniques, three free radicals (RI-RIII) in L-lysine hydrochloride dihydrate single crystals X-irradiated at 298 K were detected at 298 K, and six radicals (R1, R1', R2-R5) were detected if the temperature was lowered to 66 K from 298 K. R1 and RI dominated the central portion of the EPR at 66 and 298 K, respectively, and were identified as main chain deamination radicals, (-)OOC?H(CH(2))(4)(NH(3))(+). R1' was identified as a main chain deamination radical with the different configuration from R1 at 66 K, and it probably formed during cooling the temperature from 298 to 66 K. The configurations of R1, R1', and RI were analyzed with their coupling tensors. R2 and R3 each contain one α- and four β-proton couplings and have very similar EIEs at three crystallographic axes. The two-layer ONIOM calculations (at B3LYP/6-31G(d,p):PM3) support that R2 and R3 are from different radicals: dehydrogenation at C4, (-)OOCCH(NH(3))(+)CH(2)?H(CH(2))(2)(NH(3))(+), and dehydrogenation at C5, (-)OOCCH(NH(3))(+)(CH(2))(2)?HCH(2)(NH(3))(+), respectively. The comparisons of the coupling tensors indicated that R2 (66 K) is the same radical as RII (298 K), and R3 is the same as RIII. Thus, RII and RIII also are the radicals of C4 and C5 dehydrogenation. R4 and R5 are minority radicals and were observed only when temperature was lowered to 66 K. R4 and R5 were only tentatively assigned as the side chain deamination radical, (-)OOCCH (NH(3))(+)(CH(2))(3)?H(2), and the radical dehydrogenation at C3, (-)OOCCH(NH(3))(+)?H(CH(2))(3)(NH(3))(+), respectively, although the evidence was indirect. From simulation of the EPR (B//a, 66 K), the concentrations of R1, R1', and R2-R5 were estimated as: R1, 50%; R1', 11%; R2, 14%; R3, 16%; R4, 6%; R5, 3%.  相似文献   

15.
A theoretical study is performed on the radiation-induced radicals in crystalline alpha-l-rhamnose, using density functional theory (DFT) calculations. Irrespective of earlier structural assignments, a host of possible radical models is examined in search for a structure that accurately reproduces experimental electron paramagnetic resonance (EPR) properties. A cluster approach is followed, incorporating all hydrogen bond interactions between radical and crystalline environment. Hyperfine coupling tensors as well as g tensors are determined and a comparison is made with available experimental data. Three carbon-centered hydroxyalkyl radicals are validated, in accordance with experimental suggestions for their structure. The occurrence of a carbon-centered oxygen anion radical for one of the radical species is rejected on theoretical grounds, and instead an altered hydroxyalkyl structure is suggested. Our cluster calculations are able to determine g and hyperfine tensors for the oxygen-centered alkoxy radical in rhamnose, in accordance with one of the two measurements for this species. For all radical models, quantitative agreement with experimental hyperfine tensors is obtained by performing full cluster DFT calculations. The inclusion of the molecular environment for the determination of this EPR property proved to be essential.  相似文献   

16.
Integrated paramagnetic resonance, utilizing electron paramagnetic resonance (EPR), NMR, and electron-nuclear double resonance (ENDOR), of a series of cobalt bis-trispyrazolylborates, Co(Tp ( x )) 2, are reported. Systematic substitutions at the ring carbons and on the apical boron provide a unique opportunity to separate through-bond and through-space contributions to the NMR hyperfine shifts for the parent, unsubstituted Tp complex. A simple relationship between the chemical shift difference (delta H - delta Me) and the contact shift of the proton in that position is developed. This approach allows independent extraction of the isotropic hyperfine coupling, A iso, for each proton in the molecule. The Co..H contact coupling energies derived from the NMR, together with the known metrics of the compounds, were used to predict the ENDOR couplings at g perpendicular. Proton ENDOR data is presented that shows good agreement with the NMR-derived model. ENDOR signals from all other magnetic nuclei in the complex ( (14)N, coordinating and noncoordinating, (11)B and (13)C) are also reported.  相似文献   

17.
The five-coordinate NO-bound heme in cytochrome c' from an overexpressing variant of denitrifying R. sphaeroides 2.4.3 was investigated by proton, nitrogen, and deuterium Q-band ENDOR (electron nuclear double resonance). ENDOR was a direct probe of the unpaired electron density on the nitrogen of NO and, as measured across the EPR line shape, showed a hyperfine coupling range from 36 to 44 MHz for 14NO and 51 to 63 MHz for 15NO. The smallest NO coupling occurred at an electronic g-tensor axis perpendicular to the FeNO plane, and the largest hyperfine coupling occurred in the FeNO plane where the highest nitrogen valence spin density is located. The isotropic component of the NO hyperfine coupling indicated that the electron spin on the NO is not simply in a pi orbital having only 2p character but is in an orbital having 2s and 2p character in a 1:2 ratio. ENDOR frequencies from heme meso-protons, assigned with reference to porphyrin models, were determined to result from an anisotropic hyperfine tensor. This tensor indicated the orientation of the heme with respect to the FeNO plane and showed that the FeNO plane bisects the heme N-Fe-N 90 degrees angle. ENDOR provided additional structural information through dipolar couplings, as follows: (1) to the nearest proton of the Phe14 ring, approximately 3.1 A away from the heme iron, where Phe14 is positioned to occlude binding of NO as a 6th (distal) ligand; (2) to exchangeable deuterons assigned to Arg127 which may H-bond with the proximal NO ligand.  相似文献   

18.
W-band (95 GHz) pulsed EPR and electron-nuclear double resonance (ENDOR) spectroscopic techniques were used to determine the hyperfine couplings of different protons of Cu(II)-histidine complexes in frozen solutions. The results were then used to obtain the coordination mode of the tridentate histidine molecule and to serve as a reference for Cu(II)-histidine complexation in other, more complex systems. Cu(II) complexes with L-histidine and DL-histidine-alpha-d,beta-d2 were prepared in H2O and in D2O, and orientation-selective W-band 1H and 2H pulsed ENDOR spectra of these complexes were recorded at 4.5 K. These measurements lead to the unambiguous assignment of the signals of the H alpha, H beta, imidazole H epsilon, and the exchangeable amino, Ham, protons. The 14N superhyperfine splitting observed in the X-band EPR spectrum and the presence of only one type of H alpha and H beta protons in the W-band ENDOR spectra show that the complex is a symmetric bis complex. Its g parallel is along the molecular symmetry axis, perpendicular to the equatorial plane that consists of four coordinated nitrogens in histamine-like coordinations (NNNN). Simulations of orientation-selective ENDOR spectra provided the principal components of the protons' hyperfine interaction and the orientation of their principal axes with respect to g parallel. From the anisotropic part of the hyperfine interaction of H alpha and H beta and applying the point-dipole approximation, a structural model was derived. An unexpectedly large isotropic hyperfine coupling, 10.9 MHz, was found for H alpha. In contrast, H alpha of the Cu(II)-1-methyl-histidine complex where only the amino nitrogen is coordinated, showed a much smaller coupling. Thus, the hyperfine coupling of H alpha can serve as a signature for a histamine coordination where both the amino and imino nitrogens of the same molecule bind to the Cu(II), forming a six-membered chelating ring. Unlike H alpha the hyperfine coupling of H epsilon is not as sensitive to the presence of a coordinated amino nitrogen of the same histidine molecule.  相似文献   

19.
A previous automatic fitting procedure of EPR spectra has been extended with the purpose to characterise coupled paramagnetic complexes in powders and frozen solutions. The theoretical EPR spectra were obtained by matrix diagonalization of a general spin Hamiltonian. A least-squares fitting procedure using analytical derivatives of the calculated spectrum with respect to the spectroscopic, fine structure, nuclear quadrupole, electron-electron, and hyperfine coupling tensors was used to refine those parameters. The powder spectra of matrix isolated *CF3 and RCF2CF2* radicals, previously measured at low temperature, were reanalysed with this method. A theoretically modeled complex consisting of a Cu2+ ion, featuring an axially symmetric g-tensor and 63Cu hyperfine structure anisotropy, and a free radical located at different orientations, with respect to the symmetry axis of the Cu2+ ion, was examined in order to investigate the possibility to recover the magnetic parameters of the separate units and the magnetic couplings between them.  相似文献   

20.
An EPR (electron paramagnetic resonance) and ENDOR (electron-nuclear double resonance) study of 9-ethylguanine crystals X-irradiated at 10 K detected evidence for three radical forms. Radical R1, characterized by three proton and two nitrogen hyperfine interactions, was identified as the product of net hydrogenation at N7 of the guanine unit. R1, which evidently formed by protonation of the primary electron addition product, exhibited an unusually distorted structure leading to net positive isotropic components of the alpha-coupling to the hydrogen attached to C8 of the guanine unit. Radical R2, characterized by two nitrogen and three proton hyperfine couplings, was identified as the primary electron loss product, *G+. Distinguishing between *G+ and its N1-deprotonated product is difficult because their couplings are so similar, and density functional theory (DFT) calculations were indispensable for doing so. The results for R2 provide the most complete ENDOR characterization of *G+ presented so far. Radical R3 exhibited a narrow EPR pattern but could not be identified. The identification of radicals R1 and R2 was supported by DFT calculations using the B3LYP/6-311+G(2df,p)//6-31+G(d,p) approach. Radical R4, detected after irradiation of the crystals at room temperature, was identified as the well-known product of net hydrogenation at C8 of the guanine component. Spectra from the room temperature irradiation contained evidence for R5, an additional radical that could not be identified. Radical concentrations from the low temperature irradiation were estimated as follows: R1, 20%; R2, 65%; R3, 15%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号