首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Colloidal cobalt-doped TiO(2) (anatase) nanocrystals were synthesized and studied by electronic absorption, magnetic circular dichroism, transmission electron microscopy, magnetic susceptibility, cobalt K-shell X-ray absorption spectroscopy, and extended X-ray absorption fine structure measurements. The nanocrystals were paramagnetic when isolated by surface-passivating ligands, weakly ferromagnetic (M(s) approximately 1.5 x 10(-)(3) micro(B)/Co(2+) at 300 K) when aggregated, and strongly ferromagnetic (up to M(s) = 1.9 micro(B)/Co(2+) at 300 K) when spin-coated into nanocrystalline films. X-ray absorption data reveal that cobalt is in the Co(2+) oxidation state in all samples. In addition to providing strong experimental support for the existence of intrinsic ferromagnetism in cobalt-doped TiO(2), these results demonstrate the possibility of using colloidal TiO(2) diluted magnetic semiconductor nanocrystals as building blocks for assembly of ferromagnetic semiconductor nanostructures with potential spintronics applications.  相似文献   

2.
3.
Colloidal ZnO nanocrystals capped with dodecylamine and dissolved in toluene can be charged photochemically to give stable solutions in which electrons are present in the conduction bands of the nanocrystals. These conduction-band electrons are readily monitored by EPR spectroscopy, with g* values that correlate with the nanocrystal sizes. Mixing a solution of charged small nanocrystals (e(-)(CB):ZnO-S) with a solution of uncharged large nanocrystals (ZnO-L) caused changes in the EPR spectrum indicative of quantitative electron transfer from small to large nanocrystals. EPR spectra of the reverse reaction, e(-)(CB):ZnO-L + ZnO-S, showed that electrons do not transfer from large to small nanocrystals. Stopped-flow kinetics studies monitoring the change in the UV band-edge absorption showed that reactions of 50 μM nanocrystals were complete within the 5 ms mixing time of the instrument. Similar results were obtained for the reaction of charged nanocrystals with methyl viologen (MV(2+)). These and related results indicate that the electron-transfer reactions of these colloidal nanocrystals are quantitative and very rapid, despite the presence of ~1.5 nm long dodecylamine capping ligands. These soluble ZnO nanocrystals are thus well-defined redox reagents suitable for studies of electron transfer involving semiconductor nanostructures.  相似文献   

4.
We report the discovery that high-TC ferromagnetism in manganese-doped ZnO (Mn2+:ZnO) can be activated by amine binding and calcination. The activation of ferromagnetism is attributed to the incorporation of uncompensated p-type dopants into the ZnO lattice upon amine calcination, a process that has substantial precedence in the literature surrounding p-type ZnO. The experimental observations are consistent with a microscopic mechanism involving formation of bound magnetic polarons upon introduction of p-type dopants into Mn2+:ZnO. These results clearly demonstrate that Mn2+:ZnO ferromagnetism is critically sensitive to defects other than the magnetic dopants themselves, offering some insight into the diversity of experimental observations reported previously for this material.  相似文献   

5.
The "extra" electrons in colloidal n-type ZnO nanocrystals formed by aliovalent doping and photochemical reduction are compared. Whereas the two are similar spectroscopically, they show very different electron-transfer reactivities, attributable to their different charge-compensating cations (Al(3+)vs. H(+)).  相似文献   

6.
We report a method for the preparation of colloidal ZnO-diluted magnetic semiconductor quantum dots (DMS-QDs) by alkaline-activated hydrolysis and condensation of zinc acetate solutions in dimethyl sulfoxide (DMSO). Mechanistic studies reveal that Co(2+) and Ni(2+) dopants inhibit nucleation and growth of ZnO nanocrystals. In particular, dopants are quantitatively excluded from the critical nuclei but are incorporated nearly isotropically during subsequent growth of the nanocrystals. The smaller nanocrystal diameters that result upon doping are explained by the Gibbs-Thompson relationship between lattice strain and crystal solubility. We describe methods for cleaning the nanocrystal surfaces of exposed dopants and for redispersion of the final DMS-QDs. Homogeneous substitutional doping is verified by high-resolution low-temperature electronic absorption and magnetic circular dichroism (MCD) spectroscopies. A "giant Zeeman effect" is observed in the band gap transition of Co(2+):ZnO DMS-QDs. MCD and Zeeman spectroscopies are used to quantify the magnitude of the p-d exchange interaction (N(0)beta) that gives rise to this effect. N(0)beta values of -2.3 +/- 0.3 eV (-18 500 cm(-1)) for Co(2+):ZnO and -4.5 +/- 0.6 eV (-36 300 cm(-1)) for Ni(2+):ZnO have been determined. Ligand-to-metal charge-transfer transitions are observed in the MCD spectra of both Co(2+):ZnO and Ni(2+):ZnO DMS-QDs and are analyzed in the context of an optical electronegativity model. The importance of these charge-transfer states in determining N(0)beta is discussed. Ferromagnetism with T(C) > 350 K is observed in aggregated nanocrystals of Co(2+):ZnO that unambiguously demonstrates the existence of intrinsic high-T(C) ferromagnetism in this class of DMSs.  相似文献   

7.
Colloidal reduced ZnO nanocrystals are potent reductants for one-electron or multielectron redox chemistry, with reduction potentials tunable via the quantum confinement effect. Other methods for tuning the redox potentials of these unusual reagents are desired. Here, we describe synthesis and characterization of a series of colloidal Zn(1-x)Mg(x)O and Zn(0.98-x)Mg(x)Mn(0.02)O nanocrystals in which Mg(2+) substitution is used to tune the nanocrystal reduction potential. The effect of Mg(2+) doping on the band-edge potentials of ZnO was investigated using electronic absorption, photoluminescence, and magnetic circular dichroism spectroscopies. Mg(2+) incorporation widens the ZnO gap by raising the conduction-band potential and lowering the valence-band potential at a ratio of 0.68:0.32. Mg(2+) substitution is far more effective than Zn(2+) removal in raising the conduction-band potential and allows better reductants to be prepared from Zn(1-x)Mg(x)O nanocrystals than can be achieved via quantum confinement of ZnO nanocrystals. The increased conduction-band potentials of Zn(1-x)Mg(x)O nanocrystals compared to ZnO nanocrystals are confirmed by demonstration of spontaneous electron transfer from n-type Zn(1-x)Mg(x)O nanocrystals to smaller (more strongly quantum confined) ZnO nanocrystals.  相似文献   

8.
We report the synthesis of colloidal Mn(2+)-doped ZnO (Mn(2+):ZnO) quantum dots and the preparation of room-temperature ferromagnetic nanocrystalline thin films. Mn(2+):ZnO nanocrystals were prepared by a hydrolysis and condensation reaction in DMSO under atmospheric conditions. Synthesis was monitored by electronic absorption and electron paramagnetic resonance (EPR) spectroscopies. Zn(OAc)(2) was found to strongly inhibit oxidation of Mn(2+) by O(2), allowing the synthesis of Mn(2+):ZnO to be performed aerobically. Mn(2+) ions were removed from the surfaces of as-prepared nanocrystals using dodecylamine to yield high-quality internally doped Mn(2+):ZnO colloids of nearly spherical shape and uniform diameter (6.1 +/- 0.7 nm). Simulations of the highly resolved X- and Q-band nanocrystal EPR spectra, combined with quantitative analysis of magnetic susceptibilities, confirmed that the manganese is substitutionally incorporated into the ZnO nanocrystals as Mn(2+) with very homogeneous speciation, differing from bulk Mn(2+):ZnO only in the magnitude of D-strain. Robust ferromagnetism was observed in spin-coated thin films of the nanocrystals, with 300 K saturation moments as large as 1.35 micro(B)/Mn(2+) and T(C) > 350 K. A distinct ferromagnetic resonance signal was observed in the EPR spectra of the ferromagnetic films. The occurrence of ferromagnetism in Mn(2+):ZnO and its dependence on synthetic variables are discussed in the context of these and previous theoretical and experimental results.  相似文献   

9.
Red to blue tunable upconversion in Tm3+-doped ZrO2 nanocrystals   总被引:3,自引:0,他引:3  
The effect of dopant concentration on the blue upconversion (UPC) emission of Tm(3+) -doped ZrO(2) nanocrystals under different excitation wavelengths in the red region is reported. The UPC emissions are due to the f-f electronic transitions from excited states (1)G(4) and (1)D(2) of Tm(3+). We observed a chromatic change in the UPC with tuning the excitation wavelength. The UPC emission bands at 475, 488, and 501 nm are observed under excitation at 649 nm, but bands centered at 454 and 460 nm are observed when the excitation wavelength is tuned to 655 nm. The UPC emission could be tuned from 501 to 454 nm ( approximately 47 nm) by changing the excitation wavelength from 649 to 655 nm ( approximately 6 nm). The pump power dependence of the emission bands at 475, 488, and 501 nm were investigated on excitation intensity at 649 nm, and the emission bands at 454 and 460 nm are investigated on excitation intensity at 655 nm, which confirms that all of these UPC emission lines are a two-photon absorption process.  相似文献   

10.
Colloidal Co(2+):ZnSe diluted magnetic semiconductor quantum dots (DMS-QDs) were prepared by the hot injection method and studied spectroscopically. Ligand-field electronic absorption and magnetic circular dichroism (MCD) spectra confirm homogeneous substitutional speciation of Co(2+) in the ZnSe QDs. Absorption spectra collected at various times throughout the syntheses reveal that dopants are absent from the central cores of the QDs but are incorporated at a constant concentration during nanocrystal growth. The undoped cores are associated with dopant exclusion from the ZnSe critical nuclei. Analysis of low-temperature electronic absorption and MCD spectra revealed excitonic Zeeman splitting energies (DeltaE(Zeeman)) of these Co(2+):ZnSe QDs that were substantially smaller than anticipated from bulk Co(2+):ZnSe data. This reduction in DeltaE(Zeeman) is explained quantitatively by the absence of dopants from the QD cores, where dopant-exciton overlap would be greatest. Since dopant exclusion from nucleation appears to be a general phenomenon for DMS-QDs grown by direct chemical methods, we propose that DeltaE(Zeeman) will always be smaller in colloidal DMS-QDs grown by such methods than in the corresponding bulk materials.  相似文献   

11.
In this paper, Dy3+ -doped ZnO nanocrystals have been synthesized via a simple combustion method. The as-prepared cuboid-like ZnO nanocrystals appear to be single hexagonal crystalline phase with an average diameter of 20 nm. The characteristic luminescence of doped Dy3+ ions has been evaluated, and the highly enhanced photoluminescence of Dy3+ ions can be obtained by Li+ doping.  相似文献   

12.
The influence of surface modification on the luminescence of colloidal ZnO nanocrystals is described, with particular emphasis given to factors increasing excitonic emission quantum yields. Changes in nanocrystal size, shape, and luminescence intensities have been measured for nanocrystals capped by dodecylamine (DDA) and trioctylphosphine oxide after different growth times. Green trap emission intensities show a direct correlation with surface hydroxide concentrations. Contrary to expectations, there is no direct correlation between excitonic emission quenching and surface hydroxide concentrations. The nearly pure excitonic emission observed after heating in DDA is attributed to the removal of surface defects from the ZnO nanocrystal surfaces and to the relatively high packing density of DDA on the ZnO surfaces. Rapid, nondispersive ripening of ZnO nanocrystals upon heating in DDA is observed and explained using a colloidal growth model.  相似文献   

13.
The encapsulation of the nanocrystalline manganese‐doped zinc sulfide (ZnS:Mn) in poly(styrene‐b‐2vinylpyridine) (PS‐PVP) diblock copolymers is reported. Below the critical micelle concentration in the absence of nanocrystals (NCs), inverse micelles of PS‐PVP were induced by adding ZnS:Mn NCs, the presence of which was confirmed by scanning force microscope and dynamic light scattering. In toluene, a PS‐selective solvent, the less‐soluble PVP blocks preferentially surround the ligand‐coated ZnS:Mn NCs. For PS‐PVP encapsulated ZnS:Mn NCs, the ratio of blue emission to orange emission of ZnS:Mn NCs is dependent on both the concentration of PS‐PVP and the solvent quality. The pyridine of PVP blocks form complexes with the Zn atoms via the nitrogen lone pair and thus the sulfur vacancies are passivated. As a result, the defect‐related blue emission is selectively quenched even when the micelles are not formed. As the concentration of PS‐PVP encapsulating the ZnS:Mn NCs increases, the intensity of blue emission decreases. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3227–3233, 2006  相似文献   

14.
Photocurrent and photoconductivity measurements have been used in combination with absorption and magnetic circular dichroism (MCD) spectroscopic measurements to elucidate the mechanism of photoinduced carrier generation in nanocrystalline Co(2+):ZnO electrodes. These experiments allowed direct observation of two broad Co(2+) charge transfer (CT) bands extending throughout the visible energy range. The lower energy CT transition is assigned as a Co(2+) --> conduction band excitation (ML(CB)CT). Sensitization of this ML(CB)CT level by (4)A(2) --> (4)T(1)(P) ligand-field excitation is concluded to be responsible for the distinctive structured photocurrent action spectrum of these electrodes at ca. 14 000 cm(-1). The higher energy CT transition is assigned as a valence band --> Co(2+) excitation (L(VB)MCT) and is found to have an internal quantum efficiency for charge separation that is approximately four times larger than that of the ML(CB)CT excitation. The different internal quantum efficiencies for the two CT excitations are related to differences in excited-state wave functions arising from configuration interaction with the 1S excitonic levels of ZnO. Whereas the ML(CB)CT excited state is best described as a localized Co(3+) + e(-)(CB) configuration, the L(VB)MCT excited state (Co(+) + h(+)(VB)) has a 4-fold greater admixture of delocalized excitonic (Co(2+) + h(+)(VB) + e(-)(CB)) character in its wave function, a conclusion supported by quantitative analysis of the CT absorption intensities. Practical factors controlling the overall photovoltaic efficiencies of the photoelectrochemical cells, including electrode conductivity and porosity, were also examined.  相似文献   

15.
Yb3+-doped MnCl2 and MnBr2 crystals exhibit strong red upconversion luminescence under near-infrared excitation around 10 000 cm(-1) at temperatures below 100 K. The broad red luminescence band is centred around 15 200 cm(-1) for both compounds and identified as the Mn2+ 4T1g-->6A1g transition. Excitation with 10 ns pulses indicates that the upconversion process consists of a sequence of ground-state and excited-state absorption steps. The experimental VIS/NIR photon ratio at 12 K for an excitation power of 191 mW focused on the sample with a 53 mm lens is 4.1% for MnCl2:Yb3+ and 1.2% for MnBr2:Yb3+. An upconversion mechanism based on exchange coupled Yb3+-Mn2+ ions is proposed. Similar upconversion properties have been reported for RbMnCl3:Yb3+, CsMnCl3:Yb3+, CsMnBr3:Yb3+, RbMnBr3:Yb3+, Rb2MnCl4:Yb3+. The efficiency of the upconversion process in these compounds is strongly dependent on the connectivity between the Yb3+ and Mn2+ ions. The VIS/NIR photon ratio decreases by three orders of magnitude along the series of corner-sharing Yb3+-Cl--Mn2+, edge-sharing Yb3+-(Cl-)2-Mn2+ to face-sharing Yb3+-(Br-)3-Mn2+ bridging geometry. This trend is discussed in terms of the dependence of the relevant super-exchange pathways on the Yb(3+)-Mn2+ bridging geometry.  相似文献   

16.
ESR study of Mn(2+)-doped sodium hydrogen orthophosphate dihydrate (SHOD) single crystals is done at room temperature. The Mn(2+) spin-Hamiltonian parameters have been evaluated employing a large number of resonant line positions observed for different orientations of the external magnetic field. The values of g, A, B, D, E and a are: 2.0042+/-0.0002, 86+/-2 x 10(-4)cm(-1), 83+/-2 x 10(-4)cm(-1), 238+/-2 x 10(-4)cm(-1), 76+/-2 x 10(-4)cm(-1), 13+/-1 x 10(-4)cm(-1) for site I and 2.0032+/-0.0002, 86+/-2 x 10(-4)cm(-1), 83+/-2 x 10(-4)cm(-1), 238+/-2 x 10(-4)cm(-1), 76+/-2 x 10(-4)cm(-1), 13+/-1 x 10(-4)cm(-1) for site II, respectively. The optical absorption study of the crystal is also done. The observed bands are assigned as transitions from the (6)A(1g)(S) ground state to various excited quartet levels of a Mn(2+) ion in a cubic crystalline field. These bands are fitted with four parameters B, C, D(q) and alpha and the values found for the parameters are B=777 cm(-1), C=3073 cm(-1), D(q)=755 cm(-1), and alpha=76 cm(-1). On the basis of the data obtained the surrounding crystalline field and the nature of metal-ligand bonding are discussed.  相似文献   

17.
A polycrystalline sample of composition GaSb + 2% Mn was prepared by melt quenching. Manganese substitutes for gallium positions to form limited solid solution Ga1 ? x Mn x Sb, as shown by X-ray powder diffraction and SEM, but most manganese is consumed in the formation of magnetically ordered Mn1.1Sb inclusions having the Curie point T C ≈ 560 K, as shown by magnetic studies.  相似文献   

18.
19.
We report the engineering of surface ions present as defects in doped quantum dots (Qdots) following their synthesis. This was achieved by treating the Qdots with cation-exchange resin beads (CB). An aqueous dispersion of Mn(2+)-doped ZnS Qdots, when treated with different amounts of CB, resulted in two kinds of changes in the emission due to Mn(2+) ions. First, the intensity increased in the presence of a smaller amount of CB, to the extent of a doubled quantum yield. With increased CB as well as incubation time, the emission intensity decreased systematically, accompanied by an increasing blue shift of the peak emission wavelength. Electron spin resonance results indicated the removal of clusters of Mn(2+) present in the Qdots by the CB, which has been attributed to changes in the emission characteristics. Transmission electron microscopy studies revealed that for smaller amounts of CB there was no change in the particle size, whereas for greater amounts the particle size decreased. The results have been explained on the basis of the removal of Mn(2+) (and also Zn(2+)) ions present on the surfaces of Qdots in the form of clusters as well as individual ions.  相似文献   

20.
The intensity of high energy UV and blue upconverted emissions of Tm(3+) ions in Tm(3+)/Yb(3+) co-doped LiYF(4) colloidal nanocrystals was selectively reduced compared to the NIR emission at 802 nm. This was achieved by doping a small amount of Dy(3+) ions into the host matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号