首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
姚望  刘仁保  沈吕九 《物理》2006,35(07):537-540
文章简要地介绍了如何在量子网络中控制量子界面动力学以实现静态量子比特和动态量子比特的相互转换. 具体言之,该界面由半导体量子点、固体光学微腔以及光学波导管构成, 静态及动态比特分别为量子点中的电子自旋和波导管中的单光子波包所携带. 界面动力学的控制则是基于对量子点、微腔和波导管耦合系统的量子电动力学的严格求解. 据此可实现网络中两个远距离节点间的量子态传输、交换以及确定性的建立量子纠缠等量子操作. 上述量子界面亦可用于任意指定波形的单光子源或者单光子探测装置.  相似文献   

2.
姚望  刘仁保  沈吕九 《物理》2006,35(7):537-540
文章简要地介绍了如何在量子网络中控制量子界面动力学以实现静态量子比特和动态量子比特的相互转换.具体言之,该界面由半导体量子点、固体光学微腔以及光学波导管构成,静态及动态比特分别为量子点中的电子自旋和波导管中的单光子波包所携带.界面动力学的控制则是基于对量子点、微腔和波导管耦合系统的量子电动力学的严格求解.据此可实现网络中两个远距离节点间的量子态传输、交换以及确定性的建立量子纠缠等量子操作.上述量子界面亦可用于任意指定波形的单光子源或者单光子探测装置。  相似文献   

3.
刘绍鼎  程木田  王霞  王取泉 《物理学报》2007,56(8):4924-4929
利用粒子数运动方程和量子回归理论,计算了单个半导体量子点双激子体系脉冲激发下粒子在各能级间辐射跃迁的二阶交叉相关函数以及系统发射光子对的偏振密度矩阵.分析了激子态能级简并量子点体系发射光子对偏振纠缠特性,讨论了纠缠度随激子态间自旋弛豫的变化关系.研究表明,激子自旋弛豫会破坏该系统发射光子对的纠缠度. 关键词: 纠缠光子对 半导体量子点 二阶相关函数  相似文献   

4.
We examine several well-known quantum spin models and categorize the behaviour of pairwise entanglement at quantum phase transitions. A unitied picture on the connection between the entanglement and quantum phase transition in spin systems is presented.  相似文献   

5.
We present an entanglement analysis protocol on entangled electron spins using quantum dot (QD) and microcavity coupled system. Each quantum dot is placed in the microcavity and ancilla photon input-output process could be used to check the parity of the quantum dots. After the parity check process, the user only needs to measure the spin direction of the QD spin, and the state information can be readout completely. The feasibility of our scheme and the experimental challenge are discussed by considering currently available techniques.  相似文献   

6.
We propose a method that we call isotropic entanglement (IE), which predicts the eigenvalue distribution of quantum many body (spin) systems with generic interactions. We interpolate between two known approximations by matching fourth moments. Though such problems can be QMA-complete, our examples show that isotropic entanglement provides an accurate picture of the spectra well beyond what one expects from the first four moments alone. We further show that the interpolation is universal, i.e., independent of the choice of local terms.  相似文献   

7.
李雪琴  赵云芳  唐艳妮  杨卫军 《物理学报》2018,67(7):70302-070302
量子纠缠是实现量子计算和量子通信的核心基础,本文提出了在金刚石氮-空位色心(NV centers)自旋系综与超导量子电路耦合的混合系统中实现两个分离量子节点之间纠缠的理论方案.在该混合系统中,把金刚石NV centers自旋系综和与之耦合的超导共面谐振器视为一个量子节点,两个量子节点之间通过一个空的超导共面谐振器连接.具有较长相干时间的NV centers自旋系综作为一个量子存储器,用于制备、存储和发送量子信息;易于外部操控的超导量子电路可执行量子逻辑门操作,快速调控量子信息.为了实现两个分离量子节点之间的纠缠,首先对系统的哈密顿量进行正则变换,将其等价为两个NV centers自旋系综与同一个超导共面谐振器之间的JC耦合;然后采用NV centers自旋-光子混合比特编码的方式,通过调节超导共面谐振器的谐振频率,精确控制体系演化时间,高保真度地实现了两个分离量子节点之间的量子纠缠.本方案还可以进一步扩展和集成,用于构建多节点纠缠的分布式量子网络.  相似文献   

8.
Abstract We propose a deterministic and scalable scheme to construct a two-qubit controlled-NOT (CNOT) gate and realize entanglement swapping between photonic qubits using a quantum-dot (QD) spin in a double-sided optical microcavity. The scheme is based on spin selective photon reflection from the cavity and can be achieved in a nondestructive and heralded way. We assess the feasibility of the scheme and show that the scheme can work in both the weak coupling and the strong coupling regimes. The scheme opens promising perspectives for long-distance photonic quantum communication and distributed quantum information processing.  相似文献   

9.
Md. Mijanur Rahman 《Optik》2010,121(18):1649-1653
A cavity-assisted Raman process can initialize the inter-conversion of stationary spin qubits and flying photon qubits in quantum channels. The qubit transmission essentially requires the implementation of special laser fields to excite atoms at the transmitting node of the quantum cavity. The flying qubit is ultimately absorbed at the receiving node of the channel to regenerate the original spin state of the nanodot. The present paper deals with the phenomena involved in such nanophotonic waveguidance by the process of rigorous simulation, and it is reported that the results obtained by implementing suitable transmission protocol reflect well the reliable transfer/entanglement of the quantum states of the nanodot qubit.  相似文献   

10.
We present two schemes to generate frequency-multiplexed entangled (FME) single photons by coherently mapping photonic entanglement into and out of a quantum memory based on Raman interactions. By splitting a single photon and performing subsequent state transfer, we separate the generation of entanglement and its frequency conversion, and find that the both progresses have the characteristic of inherent determinacy. Our theory can reproduce the prominent features of observed results including pulse shapes and the condition for deterministically generating the FME single photons. The schemes are suitable for the entangled photon pairs with a wider frequency range, and could be immune to the photon loss originating from cavity-mode damping, spontaneous emission, and the dephasing due to atomic thermal motion. The sources might have significant applications in wavelength-division-multiplexing quantum key distribution.  相似文献   

11.
Entanglement is a fundamental feature of quantum theory as well as a key resource for quantum computing and quantum communication, but the entanglement mechanism has not been found at present. We think when the two subsystems exist interaction directly or indirectly, they can be in entanglement state. such as, in the Jaynes-Cummings model, the entanglement between the atom and the light field comes from their interaction. In this paper, we have studied the entanglement mechanism of electron-electron and photon-photon, which are from the spin-spin interaction. We found their total entanglement states are relevant both space state and spin state. When two electrons or two photons are far away, their entanglement states should be disappeared even if their spin state is entangled.  相似文献   

12.
Entanglement versus correlations in spin systems   总被引:1,自引:0,他引:1  
We consider pure quantum states of N>1 spins or qubits and study the average entanglement that can be localized between two separated spins by performing local measurements on the other individual spins. We show that all classical correlation functions provide lower bounds to this localizable entanglement, which follows from the observation that classical correlations can always be increased by doing appropriate local measurements on the other qubits. We analyze the localizable entanglement in familiar spin systems and illustrate the results on the hand of the Ising spin model, in which we observe characteristic features for a quantum phase transition such as a diverging entanglement length.  相似文献   

13.
周冬林  匡乐满 《中国物理 B》2009,18(4):1328-1332
This paper introduces two types of two-mode excited entangled coherent states (TMEECSs) |Ψ±(α,m,n)>, studies their entanglement characteristics, and investigates the influence of photon excitations on quantum entanglement. It shows that for the state |Ψ+(α,m,m)> the two-mode photon excitations affect seriously entanglement character while the state |Ψ-(α,m,m)> is always a maximally entangled state, and shows how such states can be produced by using cavity quantum electrodynamics and quantum measurements. It finds that the entanglement amount of the TMEECSs is larger than that of the single-mode excited entangled coherent states with the same photon excitation number.  相似文献   

14.
安雪碧  银振强  韩正甫 《物理学报》2015,64(14):140303-140303
宏观-微观纠缠最早起源于“薛定谔的猫”思想实验, 是指在宏观体系与微观体系之间建立量子纠缠. 实现宏观-微观纠缠可以利用多种物理体系来完成, 本文重点介绍了在光学体系中制备和检验宏观-微观纠缠的发展过程. 从最初的受激辐射单光子量子克隆到光学参量放大, 再到相空间的位移操作, 实验上制备宏观-微观纠缠的方法取得了长足的进步. 利用非线性光学参量放大过程制备的宏观-微观纠缠的光子数可以达到104量级, 人眼已经可以观察到, 因此使用人眼作为探测器来检验宏观-微观纠缠的实验开始出现. 但随后人们意识到, 粗精度的光子数探测器, 例如人眼, 无法严格判定宏观-微观纠缠的存在. 为了解决这个难题, 提出了一种巧妙的方法, 即在制备宏-微观纠缠后, 利用局域操作过程将宏观态再变为微观态, 通过判定微观纠缠存在的方法来判定宏微观纠缠的存在. 之后相空间的位移操作方法将宏观态的粒子数提高到108, 并且实现了纠缠的严格检验. 利用光机械实现宏观-微观纠缠的方案也被提出. 由于量子密钥分配中纠缠是必要条件, 而宏观-微观纠缠态光子数较多这一优势可能会对量子密钥分配的传输距离有所提高. 本文介绍了利用相位纠缠的相干态来进行量子秘钥分配的方案, 探讨了利用宏观-微观纠缠实现量子密钥分配的可能性.  相似文献   

15.
The coherent control of single-photon emitters as, e.g., single ions or atoms, is a crucial element for mapping quantum information between light and matter. The possibility of generating entanglement between a photon and the emitter system provides an interface between matter-based quantum memories and photonic quantum communication channels, which is the essential resource for quantum repeaters and other future quantum information applications. To generate entangled atom-photon states, in our experiment, we store a single 87Rb atom in an optical dipole trap. The single-atom/single-photon character is confirmed by the observation of photon antibunching in the detected fluorescence light. The spectral properties of single photons emitted by the atom allowed us to determine the mean kinetic energy of the atom corresponding to 105 μK. We describe a single-atom state analysis method which allowed us to characterize the entanglement between the atom and a single photon emitted in the spontaneous decay. We obtain an entanglement fidelity of 89% that clearly shows the high degree of entanglement in our system and potential for further applications in quantum communication.  相似文献   

16.
Using the method of the Jordan--Wigner transformation for solving different spin--spin correlation functions, we have investigated the generation of next-nearest-neighbouring entanglement in a one-dimensional quantum Ising spin chain with the Gaussian distribution impurities of exchange couplings and external magnetic fields taken into account. The maximal value of entanglement between the next-nearest-neighbouring qubits in the transverse Ising model was analysed in detail by varying the effectively controlled parameters such as interchange coupling, magnetic field and the system impurity. For such systems, where both exchange couplings and external magnetic field disorder appear, we show that it is possible to achieve next-nearest-neighbouring entanglement better than the previously discussed pure Ising spin chain case. We also show that the Gaussian distribution impurity can induce next-nearest-neighbouring entanglement, which can be used as a means to characterize quantum phase transition.  相似文献   

17.

We investigate the entanglement dynamics of two atoms in a double damping Jaynes-Cummings model. The two atoms are initially in the Bell states and each is in a squeezed vacuum cavity field or coherent cavity field. Compared with the case in coherent field, the atomic entanglement in the squeezed vacuum field is stronger under the same conditions. The results show that we can adopt appropriate parameters such as mean photon number, detuning, the atomic spontaneous decay and the cavity decay, to realize better control of atomic entanglement in quantum information processing. What’s worth mentioning is that proper choosing of the last two parameters enables us to decrease disentanglement period and postpone the moment when the entanglement disappears. Finally, the atomic entanglement in double damping and non-identical Jaynes-Cummings model is obtained

  相似文献   

18.
一种基于纠缠态的量子中继通信系统   总被引:6,自引:5,他引:1  
裴昌幸  阎毅  刘丹  韩宝彬  赵楠 《光子学报》2008,37(12):2422-2426
提出了一种基于纠缠态的量子中继通信系统,该系统应用纠缠为基本资源.纠缠为量子隐形传态和绝对安全的量子通信提供了保证.量子中继器用来延长高纠缠度的纠缠光子对的纠缠距离,利用纠缠交换和纠缠纯化在系统的发信者与受信者之间建立光子对的纠缠.应用量子隐形传态的原理传输量子信息.系统分析表明,量子通信系统的吞吐率随着通信双方成功建立纠缠的概率增大而显著增加,量子信号的传输距离取决于量子中继节点的级数.  相似文献   

19.
The one-dimensional t-J model Hamiltonian is realized by using hard-core boson operators. A simple algorithm written in Mathematica based on a differential realization of the hard-core bosons for finding exact solutions of the model is proposed. As a simple example, some low-lying excitation energies, the inverse compressibility, and the superconducting structure factors, as well as the particle and spin entanglement of a system with 8 sites are calculated. The results not only confirm the validity of the hard-core boson picture, but also indicate that a quantum phase transition near phase-separation at zero temperature can also be recognized by the particle and spin entanglement.  相似文献   

20.
We study the dynamics of various branched spin chain systems. In such systems entanglement can be generated and distributed, providing an essential resource for teleportation or distributed quantum processing. We show in detail how simple operations can be employed at chosen times to change the subsequent dynamics of the branched spin chains, rendering the distributed entanglement more accessible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号