首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The solvation of Cu+ by methanol (MeOH) was studied via examination of the kinetic energy dependence of the collision-induced dissociation of Cu+(MeOH)x complexes, where x = 1-6, with Xe in a guided ion beam tandem mass spectrometer. In all cases, the primary and lowest-energy dissociation channel observed is the endothermic loss of a single MeOH molecule. The primary cross section thresholds are interpreted to yield 0 and 298 K bond dissociation energies (BDEs) after accounting for the effects of multiple ion-neutral collisions, kinetic and internal energy distributions of the reactants, and lifetimes for dissociation. Density functional theory calculations at the B3LYP/6-31G* level are performed to obtain model structures, vibrational frequencies, and rotational constants for the Cu+(MeOH)x complexes and their dissociation products. The relative stabilities of various conformations and theoretical BDEs are determined from single-point energy calculations at the B3LYP/6-311+G(2d,2p) level of theory using B3LYP/6-31G*-optimized geometries. The relative stabilities of the various conformations of the Cu+(MeOH)x complexes and the trends in the sequential BDEs are explained in terms of stabilization gained from sd hybridization, hydrogen-bonding interactions, electron donor-acceptor natural bond orbital stabilizing interactions, and destabilization arising from ligand-ligand repulsion.  相似文献   

2.
Density functional theory (DFT) calculations are performed to study Cu2Ox (x = 1 - 4) clusters in their neutral, anionic and cationic states. The ground state structures are obtained and found to exhibit linear or near linear structures, which are different from the two- or three-dimensional ones suggested by the previous theoretical calculations. The calculated electron affinities of the clusters are in good agreement with the experimental ones. The low-lying excited states for the clusters are calculated using time-dependent DFT and used to assign the features in the photoelectron spectra. Our results compare well with the available experimental data.  相似文献   

3.
Collision-induced dissociation of the Fe+ (CO2)n complexes for n = 1-5 is studied using kinetic energy dependent guided ion beam mass spectrometry. In all cases, the primary products are endothermic loss of an intact neutral ligand from the complex. The cross section thresholds are interpreted to yield 0 K bond energies after accounting for the effects of multiple ion-molecule collisions, internal energy of the complexes, and unimolecular decay rates. These values are compared with density functional theoretical values for all five complexes. Theory provides bond energies in reasonable agreement with experiment for n = 1-4 and predictions for the infrared spectroscopy of these complexes that agree nicely with experimental results of Gregoire and Duncan (J. Chem. Phys. 2002, 117, 2120). Our thermochemical results are also compared with the Fe+ (CO)n and Fe+ (N2)n complexes, previously studied.  相似文献   

4.
Black single crystals of the two nonstoichiometric cerium coinage-metal oxysulfide compounds CeCu(x)OS and CeAg(x)OS (x approximately 0.8) have been prepared by the reactions of Ce2S3 and CuO or Ag2O at 1223 or 1173 K, respectively. A black powder sample of CeAgOS has been prepared by the stoichiometric reaction of Ce2S3, CeO2, Ag2S, and Ag at 1073 K. These isostructural materials crystallize in the ZrSiCuAs structure type with two formula units in the tetragonal space group P4/nmm. Refined crystal structure results and chemical analyses provide evidence that the previously known anomalously small unit-cell volume of LnCuOS for Ln = Ce (Ln = rare-earth metal) is the result of Cu vacancies and the concomitant presence of both Ce3+ and Ce4+. Both CeCu(0.8)OS and CeAgOS are paramagnetic with mu(eff) values of 2.13(6) and 2.10(1) mu(B), respectively. CeCu(0.8)OS is a p-type semiconductor with a thermal activation energy Ea = 0.22 eV, sigma(electrical) = 9.8(1) 10(-3) S/cm at 298 K, and an optical band gap Eg < 0.73 eV. CeAgOS has conductivity sigma(conductivity) = 0.16(4) S/cm and an optical band gap Eg = 0.71 eV at 298 K. Theoretical calculations with an on-site Coulomb repulsion parameter indicate that the Ce 4f states are fully spin-polarized and are not localized in CeCuOS, CeCu(0.75)OS, or CeAgOS. Calculated band gaps for CeCu(0.75)OS and CeAgOS are 0.6 and 0.8 eV, respectively.  相似文献   

5.
As synthetic nanocatalysis strives to create and apply well-defined catalytic centers containing as few as a handful of active metal atoms, it becomes particularly important to understand the structures, compositions, and reactivity of small metal clusters as a function of size and chemical environment. As a part of our effort to better understand the oxidation chemistry of Pt clusters, we present here a comprehensive set of density functional theory simulations combined with thermodynamic modeling that allow us to map out the T-p(O)2 phase diagrams and predict the oxygen affinity of Pt(x)O(y) clusters, x = 1-3. We find that the Pt clusters have a much stronger tendency to form oxides than does the bulk metal, that these oxides persist over a wide range of oxygen chemical potentials, and that the most stable cluster stoichiometry varies with size and may differ from the stoichiometry of the stable bulk oxide in the same environment. Further, the facility with which the clusters are reduced depends both on size and on composition. These models provide a systematic framework for understanding the compositions and energies of redox reactions of discrete metal clusters of interest in supported and gas-phase nanocatalysis.  相似文献   

6.
Eugenol (4-Allyl-2-methoxyphenol), a phenol-derivative with an intramolecular -OH ...OCH(3) hydrogen bond (H bond), has been studied in a supersonic expansion using a number of complementary laser spectroscopic techniques. The mass-resolved excitation spectrum of eugenol and its water complexes are reported for the first time. The most intense set of bands on the resonantly enhanced multiphoton ionization (REMPI) spectrum of eugenol originate in a conformer whose S(1)<--S(0) transition is at 35 202 cm(-1) and the ionization threshold at (I(0)<--S(0)) 62 544+/-150 cm(-1) (7.755+/-0.019 eV). In addition, two low intensity features redshifted with respect to the 0(0) (0) transition have been identified as due to a second, less stable conformer. Ab initio calculations show that the potential energy landscape depicts at least three minima associated with one folded and two extended conformers, one of which is the most stable. Clusters of eugenol/water were prepared in a supersonic expansion by seeding eugenol and water in noble gas He and examined by two-color REMPI (R2PI) and IR-UV double resonance spectroscopies. Only one single isomer was observed for both 1:1 and 1:2 complexes, in contrast with the several stable conformers provided by the computations. The dissociation energies of the 1:1 and 1:2 complexes have been determined by the fragmentation threshold method and the results compared with those from ab initio calculations conducted at the B3LYP and MP2 levels with a variety of basis sets.  相似文献   

7.
The evaporation of water from hydrated alkaline earth metal ions, produced by electrospray ionization, was studied in a Fourier transform mass spectrometer. Zero-pressure-limit dissociation rate constants for loss of a single water molecule from the hydrated divalent metal ions, M(2+)(H(2)O)(n) (M = Mg, Ca, and Sr for n = 5-7, and M = Ba for n = 4-7), are measured as a function of temperature using blackbody infrared radiative dissociation. From these values, zero-pressure-limit Arrhenius parameters are obtained. By modeling the dissociation kinetics using a master equation formalism, threshold dissociation energies (E(o)) are determined. These reactions should have a negligible reverse activation barrier; therefore, E(o) values should be approximately equal to the binding energy or hydration enthalpy at 0 K. For the hepta- and hexahydrated ions at low temperature, binding energies follow the trend expected on the basis of ionic radii: Mg > Ca > Sr > Ba. For the hexahydrated ions at high temperature, binding energies follow the order Ca > Mg > Sr > Ba. The same order is observed for the pentahydrated ions. Collisional dissociation experiments on the tetrahydrated species result in relative dissociation rates that directly correlate with the size of the metals. These results indicate the presence of two isomers for hexahydrated magnesium ions: a low-temperature isomer in which the six water molecules are located in the first solvation shell, and a high-temperature isomer with the most likely structure corresponding to four water molecules in the inner shell and two water molecules in the second shell. These results also indicate that the pentahydrated magnesium ions have a structure with four water molecules in the first solvation shell and one in the outer shell. The dissociation kinetics for the hexa- and pentahydrated clusters of Ca(2+), Sr(2+), and Ba(2+) are consistent with structures in which all the water molecules are located in the first solvation shell.  相似文献   

8.
Collision-induced dissociation of complexes of Cu+ bound to a variety of N-donor ligands (N-L) with Xe is studied using guided ion beam tandem mass spectrometry. The N-L ligands examined include pyridine, 4,4-dipyridyl, 2,2-dipyridyl, and 1,10-phenanthroline. In all cases, the primary and lowest-energy dissociation channel observed corresponds to the endothermic loss of a single intact N-L ligand. Sequential dissociation of additional N-L ligands is observed at elevated energies for the pyridine and 4,4-dipyridyl complexes containing more than one ligand. Ligand exchange processes to produce Cu+Xe are also observed as minor reaction pathways in several systems. The primary cross section thresholds are interpreted to yield 0 and 298 K bond dissociation energies (BDEs) after accounting for the effects of multiple ion-neutral collisions, the kinetic and internal energy distributions of the reactants, and dissociation lifetimes. Density functional theory calculations at the B3LYP/6-31G* level are performed to obtain model structures, vibrational frequencies, and rotational constants for the neutral N-L ligands and the Cu+(N-L)x complexes. The relative stabilities of the various conformations of these N-L ligands and Cu+(N-L)x complexes as well as theoretical BDEs are determined from single point energy calculations at the B3LYP/6-311+G(2d,2p) level of theory using B3LYP/6-31G* optimized geometries. Excellent agreement between theory and experiment is observed for all complexes containing one or two N-L ligands, while theory systematically underestimates the strength of binding for complexes containing more than two N-L ligands. The ground-state structures of these complexes and the trends in the sequential BDEs are explained in terms of stabilization gained from sd-hybridization and repulsive ligand-ligand interactions. The nature of the binding interactions in the Cu+(N-L)x complexes are examined via natural bond orbital analyses.  相似文献   

9.
The sequential bond energies of Ca(2+)(H(2)O)(x) complexes, where x = 1-8, are measured by threshold collision-induced dissociation (TCID) in a guided ion beam tandem mass spectrometer. From an electrospray ionization source that produces an initial distribution of Ca(2+)(H(2)O)(x) complexes where x = 6-8, complexes down to x = 2 are formed using an in-source fragmentation technique. Ca(2+)(H(2)O) cannot be formed in this source because charge separation into CaOH(+) and H(3)O(+) is a lower energy pathway than simple water loss from Ca(2+)(H(2)O)(2). The kinetic energy dependent cross sections for dissociation of Ca(2+)(H(2)O)(x) complexes, where x = 2-9, are examined over a wide energy range to monitor all dissociation products and are modeled to obtain 0 and 298 K binding energies. Analysis of both primary and secondary water molecule losses from each sized complex provides thermochemistry for the sequential hydration energies of Ca(2+) for x = 1-8 and the first experimental values for x = 1-4. Additionally, the thermodynamic onsets leading to the charge separation products from Ca(2+)(H(2)O)(2) and Ca(2+)(H(2)O)(3) are determined for the first time. Our experimental results for x = 1-6 agree well with previously calculated binding enthalpies as well as quantum chemical calculations performed here. Agreement for x = 1 is improved when the basis set on calcium includes core correlation.  相似文献   

10.
The influence of halogenation on the properties of uracil and its noncovalent interactions with alkali metal ions is investigated both experimentally and theoretically. Bond dissociation energies of alkali metal ion-halouracil complexes, M+(XU), are determined using threshold collision-induced dissociation techniques in a guided ion beam mass spectrometer, where M+ = Li+, Na+, and K+ and XU = 5-fluorouracil, 5-chlorouracil, 6-chlorouracil, 5-bromouracil, and 5-iodouracil. The structures and theoretical bond dissociation energies of these complexes are determined from ab initio calculations. Theoretical calculations are also performed to examine the influence of halogenation on the acidities, proton affinities, and Watson-Crick base pairing energies. Halogenation of uracil is found to produce a decrease in the proton affinity, an increase in the alkali metal ion binding affinities, an increase in the acidity, and stabilization of the A::U base pair. In addition, alkali metal ion binding is expected to lead to an increase in the stability of nucleic acids by reducing the charge on the nucleic acid in a zwitterion effect as well as through additional noncovalent interactions between the alkali metal ion and the nucleobases.  相似文献   

11.
Nickel cation-acetylene complexes of the form Ni(+)(C(2)H(2))(n), Ni(+)(C(2)H(2))Ne, and Ni(+)(C(2)H(2))(n)Ar(m) (n = 1-4) are produced in a molecular beam by pulsed laser vaporization. These ions are size-selected and studied in a time-of-flight mass spectrometer by infrared laser photodissociation spectroscopy in the C-H stretch region. The fragmentation patterns indicate that the coordination number is 4 for this system. The n = 1-4 complexes with and without rare gas atoms are also investigated with density functional theory. The combined IR spectra and theory show that pi-complexes are formed for the n = 1-4 species, causing the C-H stretches in the acetylene ligands to shift to lower frequencies. Theory reveals that there are low-lying excited states nearly degenerate with the ground state for all the Ni(+)(C(2)H(2))(n) complexes. Although isomeric structures are identified for rare gas atom binding at different sites, the attachment of rare gas atoms results in only minor perturbations on the structures and spectra for all complexes. Experiment and theory agree that multiple acetylene binding takes place to form low-symmetry structures, presumably due to Jahn-Teller distortion and/or ligand steric effects. The fully coordinated Ni(+)(C(2)H(2))(4) complex has a near-tetrahedral structure.  相似文献   

12.
A new ternary aluminide, LaNi(1 + x)Al(6 - x ) (x = 0.44), has been synthesized from La, Ni, and Al in sealed silica tubes. Its structure, determined by single-crystal X-ray diffraction, is tetragonal P4/mmm (No. 123) with Z = 1 and has the lattice parameters a = 4.200(8) and c = 8.080(8) angstroms. Refinement based on Fo2 yielded R1 = 0.0197 and wR2 = 0.020 [I > 2sigmaI]. The compound adopts a structure type previously observed in SrAu2Ga5 and EuAu2Ga5. The atomic arrangement is closely related to the one in BaAl4 as well as in other rare-earth gallide compounds such as LaNi0.6Ga6, HoCoGa5, Ce4Ni2Ga20, Ce4Ni2Ga17, Ce4NiGa18, and Ce3Ni2Ga15. This structure exhibits a large open cavity which may be filled by a guest atom. Band structure calculations using density functional theory have been carried out to understand the stability of this new compound.  相似文献   

13.
In this paper we report an extension of our earlier study on the structure of Alfacetone)2 + Collision-induced dissociation (CID) on MfacetoneXacetone-d6)+ for M = Al, Fe, Co, and Cu yields primarily, if not exclusively, nearly equal amounts of acetone and acetone-d6. Likewise, infrared multiphoton dissociation (IRMPD) at 10.6 μm yields, exclusively, nearly equal losses of the labeled and unlabeled acetones. These results suggest that the two acetone ligands bind in an equivalent fashion. Sc+ was also studied, which proved to be the most interesting. Sc+ reacts with acetone to form primarily ScO+, which undergoes higher order reactions leading to several products including ScO(acetone)2 +. IRMPD on this ion produces ScO(acetone-d6)(CD2CO)+, while its perdeuterated analog also produces ScO(acetone-d6)+ in addition to ScO(acetone-d6(CD2CO)+. The IRMPD results are supplemented by studying the primary and higher order reactions of Sc+ with acetone, as well as the CID of ScO(acetone)2 +. Finally, a qualitative assessment of the infrared photodissociation cross sections is given. It is found that the relative photodissociation cross sections follow the orders Co(acetone-d6)2 + > Co(acetone)(acetone-d6) > Co(acetone)2 + and Co(acetone-d6)+ > Co(acetone)+.  相似文献   

14.
Brownish platelet crystals of My(VO)9 + x(PO4)4x(HPO4)12 - 4x (M = Cs+, NH4+ and Rb+) were prepared hydrothermally. The structure of Cs approximately 5(VO)10(PO4)4(HPO4)8 was solved from single-crystal X-ray diffraction data in the centrosymmetric monoclinic space group C2/c (No. 15) a = 21.1951(8) A, b = 12.2051(4) A, c = 20.6230(8) A, beta = 109.742(2) degrees, Z = 4 (R1(Fo) = 0.054, wR2(Fo2) = 0.123). The structure of Cs approximately 5(VO)10(PO4)4(HPO4)8 is described and compared to that of K2(VO)3(HPO4)4 previously reported by Lii. For the three compounds, thermogravimetric data and susceptibility measurements were investigated and were found to be in agreement with the structural study.  相似文献   

15.
The pyridyl-lead complexes [Pb(m)-C5H4N](-) (m = 1-4), which are produced from the reactions between lead clusters formed by laser ablation and the pyridine molecules seeded in argon carrier gas, are studied by photoelectron (PE) spectra and density functional theory. The adiabatic electron affinity (EA) of [Pb(m)C5H4N](-) is obtained from PE spectra at photon energies of 308 and 193 nm. Theoretical calculation is carried out to elucidate their structures and bonding modes. A variety of geometries for the isomers are optimized to search for the lowest-energy geometry. By comparing the theoretical results, including the EA and simulated density of state spectra, with the experimental determination, the lowest-energy structures for each species are obtained. The following analysis of the molecular orbital composition provides the evidence that the pyridyl binds on lead clusters through the Pb-C sigma bond. Moreover, there is an apparent spin-state transition from triplet state toward singlet state for the ground-state structure of [Pb(m)C5H4N](-) with an increase of lead cluster.  相似文献   

16.
Low pressure flash thermolysis of different precursor molecules containing-ClO, -ClO3 or -OClO3 yield, when highly diluted in Ne or O2 and subsequent quenching of the products in a matrix at 5 or 15 K, ClOx (x = 1, 3, 4) radicals, respectively. If Ne or O2 gas is directed over solid ClO2 at -120 degrees C and the resulting gas mixtures are immediately deposited as a matrix, a high fraction of (OClO)2 is trapped. This enables recording of IR and UV spectra of weakly bonded (OClO)2 dimers and detailed studying of their photochemistry. For Ne or O2 matrix isolated ClO radicals the vibrational wavenumbers and electronic transitions are only slightly affected compared with the gas phase. In this study strong evidence is found for long lived ClO in the electronically excited 2 [symbol: see text] 1/2 state. A comprehensive IR study of Ne matrix isolated ClO3 (fundamentals at 1081, 905, 567, 476 cm-1) yield i) a reliable force field; ii) a OClO bond angle of alpha e = 113.8 +/- 1 degrees and iii) a ClO bond length of 148.5 +/- 2 pm in agreement with predicted data from quantum chemical calculations. The UV/Vis spectrum of ClO3 isolated in a Ne matrix (lambda max at 32,100 and 23,150 cm-1) agrees well with the photoelectron spectrum of ClO3- and theoretical predictions. The origin of the structured high energy absorption is at 22,696 cm-1 and three fundamentals (794, 498, 280 cm-1) are detected in the C2E state. By photolysis of ClO3 with visible light the complex ClO.O2 with ClO in the 2 [symbol: see text] 1/2 state is formed. In an extended spectroscopic study of the elusive ClO4 radical, isolated in a Ne or O2 matrix, three additional IR bands, a complete UV spectrum and a strong interaction with O2 are found. This leads to the conclusion that ClO4 exhibits C2v or Cs symmetry with a shallow potential minimum and forms with O2 the previously unknown peroxy radical O3ClO-O2. All these results are discussed in the context of recent developments in the chemistry and spectroscopy of the important and interesting ClOx (x = 1-4) family of radicals.  相似文献   

17.
A theoretical study on the structures and vibrational spectra of M+(H2O)Ar0‐1 (M = Cu, Ag, Au) complexes was performed using ab initio method. Geometrical structures, binding energies (BEs), OH stretching vibrational frequencies, and infrared (IR) absorption intensities are investigated in detail for various isomers with Ar atom bound to different binding sites of M+(H2O). CCSD(T) calculations predict that BEs are 14.5, 7.5, and 14.4 kcal/mol for Ar atom bound to the noble metal ion in M+(H2O)Ar (M = Cu, Ag, Au) complexes, respectively, and the corresponding values have been computed to be 1.5, 1.3, and 2.1 kcal/mol when Ar atom attaches to a H atom of water molecule. The former structure is predicted to be more stable than the latter structure. Moreover, when compared with the M+(H2O) species, tagging Ar atom to metal cation yields a minor perturbation on the IR spectra, whereas binding Ar atom to an OH site leads to a large redshift in OH stretching vibrations. The relationships between isomers and vibrational spectra are discussed. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

18.
In this work, the potential energy curves of several low-lying excited states of M+(H2O)n = 1-4 (M = Li and Na) clusters with one M─O bond, related to the stretching of their M─O bond, were calculated in the gas phase. The time-dependent density functional theory and direct-symmetry-adapted cluster-configuration interaction were used in this study separately. Theoretical calculations showed that the charge transfer occurred between M+ and (H2O)n in the excited clusters so that the neutral metal atom was obtained at the dissociation limit of the potential curves. The excited potential curves of clusters were also calculated in the presence of the electrostatic field of water (EFW), and it was found that the charge transfer was blocked in the presence of EFW. The effect of the size of the (H2O)n cluster on the shape of the excited potential curves was investigated to observe how the M─O bond was affected in the excited states depending on the (H2O)n size. It was found that the increase in the size of the (H2O)n cluster increased the number of bonding excited potential curves. The difference between the electron density of the excited and ground electronic states was calculated to see how the charge transfer was affected by the size of the (H2O)n cluster.  相似文献   

19.
A novel mu-pyrazolato-mu-hydroxo-dibridged copper(II) complex has been synthesized and structurally characterized: [(Cu(mepirizole)Br)2(mu-OH)(mu-pz)] (mepirizole=4-methoxy-2-(5-methoxy-3-methyl-1H-pyrazol-1-yl)-6-methylpyrimidine; pz=pyrazolate). The title compound crystallizes in the monoclinic system, space group P2(1)/c, with a=15.618(2) A, b=15.369(3) A, c=16.071(3) A, and beta=112.250(1) degrees. The structure is built up of dinuclear [(Cu(mepirizole)Br)2(mu-OH)(mu-pz)] units with five-coordinated copper(II) ions (CuBrN3O chromophores) linked by mu2-OH and mu2-pyrazolato bridges that are well separated from each others. The intramolecular copper-copper distance is 3.378(3) A. Magnetic susceptibility data show that the copper atoms are strongly antiferromagnetically coupled with J=-770 cm(-1). The obtained triplet-singlet energy gap is compared with those reported for a series of related dimers. The strong antiferromagnetic coupling arising from the complementarity of the hydroxo and pyrazolato bridges has been discussed on the basis of DFT calculations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号