首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The catalytic activities of gold, palladium, and rhodium particles and their binary systems electrodeposited on the surface of a glassy-carbon electrode in the oxidation of dopamine and ascorbic acid are compared. As compared to individual noble metals, the Au-Pd binary system exhibits a higher catalytic activity that manifests itself in a multiple increase in the oxidation current of the mediator and in a decrease in the oxidation potential of the substrate. It is found that dopamine and ascorbic acid can be simultaneously determined by voltammetry at an electrode modified with the Au-Pd binary system. The catalytic currents of substrate oxidation are linear functions of the concentrations in the ranges from (1 × 10?3 to 1 × 10?7) M for dopamine and from (5 × 10?3 to 1 × 10?6) M for ascorbic acid.  相似文献   

2.
用电沉积方法制备了纳米铜修饰电极并将其用于混合溶液中多巴胺(DA)和抗坏血酸的同时测定。在优化的实验条件下,修饰电极对多巴胺和抗坏血酸具有良好的电催化响应,多巴胺的峰电流与浓度在8.0×10-7mol/L~1.0×10-4mol/L范围内成很好的线性关系,抗坏血酸的氧化峰电流与其浓度在8.0×10-6mol/L~1.0×10-3mol/L的范围成良好的线性关系。该修饰电极制备简单、稳定性好,用于样品检测,效果良好。  相似文献   

3.
Electrochemical determination of dopamine (DA) in the presence of ascorbic acid (AA) was achieved on boron-doped diamond (BDD) film electrode by differential pulse voltammetry. The experimental results indicated that the oxidative peaks of DA and AA could be separated completely on anodically-treated (BDD) electrode without further modification, although these two peaks can not be separated on glassy carbon electrode. The peak separation of DA and AA was developed to be 0.44 V. High sensitivity was obtained to determine DA selectively with the coexisting of a large excess of AA in acidic media by DPV. The detection limit of DA was achieved to be 1.1 × 10-6 M in the presence of AA with the concentration of 200 times more than DA. This technique was also applied to the determination of DA in real samples.   相似文献   

4.
Pyrolytic graphite electrodes (PGE) were modified into dopamine solutions using phosphate buffer solutions, pH 10 and 6.5, as supporting electrolyte. The modification process involved a previous anodization of the working electrode at +1.5 V into 0.1 mol L−1 NaOH followed by other anodization step, in the same experimental conditions, into dopamine (DA) solutions. pH of the supporting electrolyte performed an important role in the production of a superficial melanin polymeric film, which permitted the simultaneous detection of ascorbic acid (AA), (DA) and uric acid (UA), ΔEAA-DA = 222 mV; ΔEAA-UA = 360 mV and ΔEDA-UA = 138 mV, avoiding the superficial poisoning effects. The calculated detection limits were: 1.4 × 10−6 mol L−1 for uric acid, 1.3 × 10−5 mol L−1 for ascorbic acid and 1.1 × 10−7 mol L−1 for dopamine, with sensitivities of (7.7 ± 0.5), (0.061 ± 0.001) and (9.5 ± 0.05) A mol−1 cm−2, respectively, with no mutual interference. Uric acid was determined in urine, blood and serum human samples after dilution in phosphate buffer and no additional sample pre-treatment was necessary. The concentration of uric acid in urine was higher than the values found in blood and serum and the recovery tests (92-102%) indicated that no matrix effects were observed.  相似文献   

5.
A novel carbon-nanofiber-modified carbon-paste electrode (CNF-CPE) was employed for the simultaneous determination of dopamine (DA), ascorbic acid (AA) and uric acid (UA) with good selectivity and high sensitivity. The CNFs were prepared by combination of electrospinning technique with thermal treatment method and were used without any pretreatment. In application to determination of DA, AA and UA in the ternary mixture, the pristine CNF-CPE exhibited well-separated differential pulse voltammetric peaks with high catalytic current. Low detection limits of 0.04 μM, 2 μM and 0.2 μM for DA, AA and UA were obtained, with the linear calibration curves over the concentration range 0.04–5.6 μM, 2–64 μM and 0.8–16.8 μM, respectively.  相似文献   

6.
LaFeO3 nanoparticles of approximately 22 nm in size were synthesized and characterized by XRD and TEM. A novel glassy carbon electrode modified with LaFeO3 nanoparticles was constructed and characterized by electrochemical impedance spectroscopy and cyclic voltammetry. The modified electrode exhibited strong promoting effect and high stability toward the electrochemical oxidation of dopamine (DA), which gave reversible redox peaks with a formal potential of 0.145 V (vs. Ag/AgCl) in pH 7.0 phosphate buffer solution. The anodic peak current (measured by constant potential amperometry) increased linearly with the concentration of dopamine in the range from 1.5?×?10?7 to 8.0?×?10?4 M. The detection limit was 3.0?×?10?8 M. The relative standard deviation of eight successive scans was 3.47% for 1.0?×?10?6 M DA. The interference by ascorbic acid was eliminated efficiently. The method was used to determine DA in dopamine hydrochloride injections and showed excellent sensitivity and recovery.  相似文献   

7.
The oxidation of phenosafranine at glassy carbon electrode gives rise to stable redox active electropolymerized film containing a polyazine moiety (poly(phenosafranine)). The redox response of the poly(phenosafranine) film was observed at the modified electrode at different pH and the pH dependence of the peak potential is 60 mV/pH, which is very close to the expected Nernstian behavior. The apparent diffusion coefficient (Dapp) of poly(phenosafranine) film was measured as 2.51 × 10−9 cm2/s. This film exhibits potent and persistent electron-mediating behavior followed by well-separated oxidation peaks towards ascorbic acid (AA), dopamine (DA) and serotonin with activation overpotential, which is 200 mV lower than that of the bare electrode for AA oxidation. Using differential pulse voltammetry (DPV) studies, the limit of detection of DA in the presence of AA is estimated to be in the submicromolar regime. This method has been used for determining DA and AA concentrations in real samples with satisfactory results.  相似文献   

8.
The tabrication, characterisation, and electroanalytical application of gold and gold amalgam nanoparticles on glassy carbon electrodes is examined. Once the deposition parameters for gold nanoparticle electrodes were optimised, the analytical utility of the electrodes was examined in CrIII electroanalysis. It was found that gold nanoparticle modified (Au-NM) electrodes possess higher sensitivity than gold macroelectrodes. In addition, gold amalgam nanoparticle modified (AuHg-NM) electrodes were fabricated and characterised. The response of those electrodes was recorded in the presence of important environmental analytes (heavy metal cations). It was found AuHg-NM electrodes demonstrate a unique voltammetric behaviour and can be applied for electroanalysis when enhanced sensitivity is crucial.  相似文献   

9.
Clomipramine, an effective and important antipsychotic drug with low redox activity and poor hydrophilicity, was found to effectively accumulate on hydrophobic 16-mercaptohexadecanoic acid (i.e. MHA) self-assembled monolayer (SAM) modified gold electrode (i.e. MHA/Au) and generating a sensitive anodic peak at about 0.86 V (vs. SCE) in 0.05 M Tris–HCl (pH = 8.1) buffer solution. Thus, quantitative measurement of clomipramine was established with high sensitivity under optimum conditions. The anodic peak current was linear to clomipramine concentration in the range from 1 × 10−6 to 5 × 10−5 M, with a detection limit of 6 × 10−9 M. This method was successfully applied to the detection of clomipramine in drug tablets and proved to be reliable compared to UV. The spectral features, electrochemical characteristics and wettability of MHA-SAM were also studied. Correspondence: Jilie Kong, Department of Chemistry, Fudan University, Shanghai 200433, P.R. China  相似文献   

10.
A novel polymer modified electrode is discussed in this paper. This resulting electrode can catalyze remarkably toward the electrochemical oxidations of dopamine (DA) and ascorbic acid (AA). Moreover, it can clearly discriminate the electrochemical oxidations of DA from that of AA based on their semi-derivative voltammograms. Hence, a simultaneous determination of DA and AA based on semi-derivative voltammetry at a poly(toluidine blue) modified electrode is suggested. The detection linear range for DA is 0.4 micromol L(-1)-1.5 mmol L(-1), and AA 0.2 micromol L(-1)-2.4 mmol L(-1), respectively. The resulting modified electrode was tentatively used to determine DA and AA in brain tissue.  相似文献   

11.
The electrooxidation of dopamine (DA) and ascorbic acid (AA) was studied using gold electrodes modified by a cationic self-assembled monolayer of [Os(bpy)2(bpy-(CH2),3SH)]2+ by cyclic voltammetry. At an [Os(bpy)2(bpy-(CH2)13SH)]2+/Au electrode, the oxidation peak of DA shifted to a much more positive potential as compared with that of a bare gold electrode, while the oxidation peak potential of AA showed a slightly negative shift due to their different electrostatic interactions with the cationic monolayer. Thus, a sufficient potential difference was achieved for distinguishing the electrochemical responses of DA and AA. However, when CH3(CH2)11SH was mixed into the cationic monolayer, the enhanced packing of the mixed monolayer blocked the access of DA or AA to the electrode, resulting in further positive shifts for both oxidation-peak potentials.  相似文献   

12.
A novel electrode was developed through electrodepositing gold nanoparticles (GNPs) on overoxidized-polyimidazole (PImox) film modified glassy carbon electrode (GCE). The combination of GNPs and the PImox film endowed the GNPs/PImox/GCE with good biological compatibility, high selectivity and sensitivity and excellent electrochemical catalytic activities towards ascorbic acid (AA), dopamine (DA), uric acid (UA) and tryptophan (Trp). In the fourfold co-existence system, the peak separations between AA–DA, DA–UA and UA–Trp were large up to 186, 165 and 285 mV, respectively. The calibration curves for AA, DA and UA were obtained in the range of 210.0–1010.0 μM, 5.0–268.0 μM and 6.0–486.0 μM with detection limits (S/N = 3) of 2.0 μM, 0.08 μM and 0.5 μM, respectively. Two linear calibrations for Trp were obtained over ranges of 3.0–34.0 μM and 84.0–464.0 μM with detection limit (S/N = 3) of 0.7 μM. In addition, the modified electrode was applied to detect AA, DA, UA and Trp in samples using standard addition method with satisfactory results.  相似文献   

13.
Glycine was covalently grafted on to a glassy carbon electrode (GCE) by amine cation radical formation in electrooxidation of the amino-containing compound. X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry proved the immobilization of glycine on the GCE. The modified electrode reduced the overpotentials of dopamine (DA) and ascorbic acid (AA) by approximately 0.15 V and 0.23 V, respectively, and resolved the overlapping voltammetric response of DA and AA into two well-defined voltammetric peaks in cyclic voltammetry (CV) or differential pulse voltammetry (DPV), unlike the unmodified GCE; this can be used for the simultaneous determination of these species in a mixture. The differential pulse peak current was linearly dependent on DA and AA concentration in the range 5 × 10–6– 8 × 10–4 mol L–1 and 6 × 10–5– 4 × 10–3 mol L–1, with correlation coefficients of 0.996 and 0.994, respectively. The detection limits (3δ) for DA and AA were 1.8 × 10–6 mol L–1 and 2.1 × 10–5 mol L–1, respectively. The modified electrode is very sensitive, selective and stable, and has been applied to the determination of DA and AA simultaneously in samples with satisfactory results. Received: 30 October 2000 / Revised: 9 March 2001 / Accepted: 13 March 2001  相似文献   

14.
Glycine was covalently grafted on to a glassy carbon electrode (GCE) by amine cation radical formation in electrooxidation of the amino-containing compound. X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry proved the immobilization of glycine on the GCE. The modified electrode reduced the overpotentials of dopamine (DA) and ascorbic acid (AA) by approximately 0.15 V and 0.23 V, respectively, and resolved the overlapping voltammetric response of DA and AA into two well-defined voltammetric peaks in cyclic voltammetry (CV) or differential pulse voltammetry (DPV), unlike the unmodified GCE; this can be used for the simultaneous determination of these species in a mixture. The differential pulse peak current was linearly dependent on DA and AA concentration in the range 5 x 10(-6)-8 x 10(-4) mol L(-1) and 6 x 10(-5)-4 x 10(-3) mol L(-1), with correlation coefficients of 0.996 and 0.994, respectively. The detection limits (3delta) for DA and AA were 1.8 x 10(-6) mol L(-1) and 2.1 x 10(-5) mol L(-1), respectively. The modified electrode is very sensitive, selective and stable, and has been applied to the determination of DA and AA simultaneously in samples with satisfactory results.  相似文献   

15.
A sensitive and selective electrochemical method for the determination of dopamine using an Evans Blue polymer film modified on glassy carbon electrode was developed. The Evans blue polymer film modified electrode shows excellent electrocatalytic activity toward the oxidation of dopamine in phosphate buffer solution (pH 4.5). The linear range of 1.0 x 10(-6)-3.0 x 10(-5) M and detection limit of 2.5 x 10(-7) M were observed in pH 4.5 phosphate buffer solutions. The interference studies showed that the modified electrode exhibits excellent selectivity in the presence of large excess of ascorbic acid and uric acid. The separation of the oxidation peak potentials for dopamine-ascorbic acid and dopamine-uric acid were about 182 mV and 180 mV, respectively. The differences are large enough to determine AA, DA and UA individually and simultaneously. This work provides a simple and easy approach to selectively detect dopamine in the presence of ascorbic acid and uric acid in physiological samples.  相似文献   

16.
多壁碳纳米管修饰碳黑微电极同时测定多巴胺和抗坏血酸   总被引:1,自引:0,他引:1  
制备了多壁碳纳米管修饰碳黑微电极,研究了多巴胺(DA)和抗坏血酸(AA)在该修饰电极上的电化学行为.实验表明,在pH 7.0的PBS缓冲溶液中,该修饰电极对DA和从均具有显著的催化氧化作用,AA与DA的氧化电位分别为30 mV和280 mV(vs.SCE).利用二次导数线性扫描伏安法测定,DA与AA的线性范围分别为6.0×10-9~2.0×10-4 mol/L和2.0×10-7~1.0×10-3mol/L,检出限为2.0×10-9mol/L 和1.0×10-7mol/L.方法已用于人工合成样品的分析.  相似文献   

17.
Wang Z  Liu J  Liang Q  Wang Y  Luo G 《The Analyst》2002,127(5):653-658
The voltammetric separation of dopamine and ascorbic acid was studied with cyclic voltammetry at two kinds of carbon nanotube-modified electrodes (coated and intercalated). The anodic peak difference reached 270 mV under the present conditions. The separation mechanism and effect factors were carefully studied. Using various types of surfactants as coating dispersants of carbon nanotubes, it was demonstrated that the charge nature of the surfactants had a strong effect on the electrochemical behavior of dopamine and ascorbic acid. When the oxidation solution of carbon nanotubes was changed from the most commonly used mixed concentrated nitric acid and sulfuric acid (1 + 3 v/v) to dilute nitric acid and to hydrochloric acid, the anodic peak separation value of dopamine and ascorbic acid increased significantly, and it was shown that carboxylic acid groups attached to the carbon nanotubes were an adverse factor for the discrimination of DA from AA. These results indicated that the resolution of DA and AA was mainly attributable to the stereo porous interfacial layer formed from aggregated pores and inner cavities of the carbon nanotubes. The modified electrodes exhibited an attractive ability to measure DA and AA simultaneously and showed good stability and reproducibility.  相似文献   

18.
A voltammetric sensor is presented for the simultaneous determination of dopamine (DA) and uric acid (UA) in the presence of ascorbic acid (AA). It is based on a gold electrode (GE) modified with carboxyl-functionalized graphene (CFG) and silver nanocube functionalized DA nanospheres (AgNC@PDA-NS). The AgNC@PDA-NS nanocomposite was characterized by scanning electron microscopy and UV-Vis spectroscopy. The electrochemical behavior of the modified electrode was evaluated by electrochemical impedance spectroscopy, cyclic voltammetry and differential pulse voltammetry. The modified electrode displays good electrocatalytic activity towards DA (typically at 0.14 V vs. Ag/AgCl) and UA (typically at 0.29 V vs. Ag/AgCl) even in the presence of ascorbic acid. Response to DA is linear in the concentration range of 2.5 to 130 μM with a detection limit of 0.25 μM. Response to UA is linear in the concentration range of 10 to 130 μM with a detection limit of 1.9 μM. In addition, the sensitivity for DA and UA is 0.538 and 0.156 μA μM?1 cm?2, respectively. The modified electrode also displays good stability, selectivity and reproducibility.
Graphical abstract The gold electrode modified with polydopamine nanospheres functionalized with silver nanocube and carboxylated graphene is used for simultaneous determination of DA and UA in the presence of AA, with wide linear range and low detection limit.
  相似文献   

19.
采用循环伏安法研究去甲肾上腺素(NE)和抗坏血酸(AA)在4-(2-吡啶偶氮)间苯二酚(PAR)导电聚合膜修饰电极上的电化学行为;以差示脉冲伏安法(DPV)对二者进行测定,发现PAR修饰电极对NE和AA有很强电催化作用,明显增强了电极反应的可逆性及峰电流。在pH 6.0磷酸盐缓冲液(PBS)中,NE氧化峰电流与其浓度在6.25×10-7~6.25×10-5mol/L范围内呈良好的线性关系,AA氧化峰电流与其浓度在1.0×10-6~3.0×10-4mol/L范围内呈良好的线性关系,检出限分别为5.0×10-8mol/L和5.0×10-7mol/L。该PAR膜修饰电极可对NE和AA进行单独或同时的测定,并用于实际样品重酒石酸去甲肾上腺素针剂和维生素C针剂的检测。  相似文献   

20.
多巴胺在DTNB自组装膜上的电催化研究   总被引:1,自引:0,他引:1  
在金电极表面制备了DTNB(5,5′ Di thiobis(2 nitrobenzoicacid))自组装单分子层膜(DTNB/AuSAM)。多巴胺在DTNB自组装膜上有一对可逆性良好的氧化还原峰,其氧化峰电流与多巴胺的浓度在5.0×10-6mol/L~1.0×10-4mol/L的范围内呈线性关系,检出限为1.0×10-6mol/L。在pH3.5的缓冲溶液中,在DTNB自组装膜上多巴胺和抗坏血酸的电化学响应可以明显区分,氧化峰电位分离达276mV。可用于抗坏血酸存在下多巴胺的检测。测定了盐酸多巴胺注射液中多巴胺的含量,其平均回收率为104%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号