首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sparsely cross-linked "nanogels" for microchannel DNA sequencing   总被引:1,自引:0,他引:1  
Doherty EA  Kan CW  Barron AE 《Electrophoresis》2003,24(24):4170-4180
We have developed sparsely cross-linked "nanogels", sub-colloidal polymer structures composed of covalently linked, linear polyacrylamide chains, as novel DNA sequencing matrices for capillary electrophoresis. The presence of covalent cross-links affords nanogel matrices with enhanced network stability relative to standard, linear polyacrylamide (LPA), improving the separation of large DNA fragments. Nanogels were synthesized via inverse emulsion (water-in-oil) copolymerization of acrylamide and N,N-methylenebisacrylamide (Bis). In order to retain the fluidity necessary in a replaceable polymer matrix for capillary array electrophoresis (CAE), a low percentage of the Bis cross-linker (< 10(-4) mol%) was used. Nanogels were characterized by multiangle laser light scattering and rheometry, and were tested for DNA sequencing by CAE with four-color laser-induced fluorescence (LIF) detection. The properties and performance of nanogel matrices were compared to those of a commercially available LPA network, which was matched for both weight-average molar mass (Mw) and extent of interchain entanglements (c/c*). Nanogels presented in this work have an average radius of gyration of 226 nm and a weight-average molar mass of 8.8 x 10(6) g/mol. At concentrations above the overlap threshold, nanogels form a clear, viscous solution, similar to the LPA matrix (Mw approximately 8.9 x 10(6) g/mol). The two matrices have similar flow and viscosity characteristics. However, because of the physical network stability provided by the internally cross-linked structure of the nanogels, a substantially longer read length ( approximately 63 bases, a 10.4% improvement) is obtained with the nanogel matrix at 98.5% accuracy of base-calling. The nanogel network provides higher-selectivity separation of ssDNA sequencing fragments longer than 375 bases. Moreover, nanogel matrices require 30% less polymer per unit volume than LPA. This is the first report of a sequencing matrix that provides better performance than LPA, in a side-by-side comparison of polymer matrices matched for Mw and extent of interchain entanglements.  相似文献   

2.
Wang Q  Xu X  Dai L 《Electrophoresis》2006,27(9):1749-1757
The preparation of a new separation matrix, quasi-interpenetrating networks (quasi-IPNs) formed by poly(N-acryloyl-Tris) (poly(tris-A)) and PVP, and its application for dsDNA and ssDNA fragments separation by CE with UV detection, are presented. This new quasi-IPN exhibited high sieving performance, good dynamic coating ability, and low viscosity. Single-base resolutions of dsDNA fragments (Rs = 0.92 for 123/124 bp) and ssDNA fragments (Rs = 0.65 for 123/124 base, Rs = 0.48 for 309/310 base) were achieved by using the quasi-IPN of poly(tris-A)/PVP (2% + 2%) solution in a 31 cm effective length linear polyacrylamide (LPA)-coated column. Single-base separation of dsDNA fragments (Rs = 0.92 for 123/124 bp) was also obtained within 28 min in a 46.7 cm effective length bare column at higher 160 V/cm electric field strength by using the same quasi-IPN solution. The RSD of the migration time measured for each DNA fragments was less than 1.5% in the bare column for nine continuous runs. The effects of temperature and electric field strength on the DNA separation were also investigated.  相似文献   

3.
Electrophoresis of single-stranded DNA in denaturing polyacrylamide gels is presently a standard procedure for the sequencing of DNA fragments. A thorough understanding of the factors that determine the resolution of DNA fractionated in polyacrylamide gels is necessary to optimize the performance of DNA sequencers. Significant research on the mobility of double-stranded (ds)DNA molecules in agarose and polyacrylamide gels has been performed, and the phenomenon of band broadening of single-stranded (ss)DNA fragments in DNA sequencing gels has received attention only recently. In this paper, we present a detailed study of mobility, diffusion and dispersion of ssDNA in sequencing gels as a function of molecular size, gel concentration and electric field strength. DNA mobility is shown to be essentially independent of electric field in the range of 0-60 V/cm. The band broadening is greatly enhanced in the presence of an electric field and the dispersion coefficient (DE) can be an order of magnitude higher than the field-free diffusion coefficient. The measured migration parameters approximately follow the predictions of the biased reptation including fluctuations (BRF) theory. However, deviations due to nonidealities of the separation conditions are observed. The measured migration parameters can be used to optimize the performance of separation systems.  相似文献   

4.
Nonaqueous capillary electrophoretic separations were performed under high electric field strengths (up to 2000 Vcm(-1)) in ethanolic background electrolyte solution and the contributions of different band broadening effects to plate height were evaluated. Under optimum conditions, increasing the field strength will provide faster separations and increased separation efficiency. Decrease in the separation efficiency at high field strengths was, however, observed in a previous study and now in the present paper an attempt is made to quantify various band broadening effects by applying a plate height model, which included the contributions of the injection plug length, diffusion, electromigration dispersion, Joule heating, analyte adsorption to the capillary wall, and detector slit aperture length. Of special interest were the contributions of Joule heating and analyte adsorption to the capillary wall. Poly(glycidylmethacrylate-co-N-vinylpyrrolidone)-coated fused-silica capillaries were used with internal diameters (ID) ranging from 30 to 75 microm. The separation efficiencies obtained experimentally were compared with the theoretically calculated efficiencies and fairly good agreement was observed for the 30 microm ID capillary. Relatively large deviation from the predictions of the model was found for the other capillary diameters especially at higher field strengths. The possible reasons for the deviation were discussed.  相似文献   

5.
线性聚丙烯酰胺凝胶毛细管电泳的迁移特性   总被引:1,自引:0,他引:1  
汪洁  王立强  石岩  郑华  陆祖康 《分析化学》2008,36(3):330-334
使用线性聚丙烯酰胺作为筛分介质,对片段长度为80~584bp的标准DNA样品进行毛细管电泳,利用激光诱导荧光方法检测信号,荧光染料为溴化乙啶。改变电场强度100~375V/cm,得到的迁移率曲线与电场强度和DNA片段长度成复杂的函数关系,已有的经典理论模型:Ogston模型、Reptation无拉伸模型和Reptation拉伸模型都不能正确地描述实验观察到的迁移率随电场强度和DNA片段长度的变化情况。因此,提出一种修正的Ogston筛分理论,假定迁移的DNA分子在电场强度方向延展拉伸,如同小分子穿过凝胶筛孔。在该修正模型中,DNA的迁移率仅依赖于电场强度、筛分介质浓度和片段长度,很好地解释了实验现象。  相似文献   

6.
Quasi‐interpenetrating network (quasi‐IPN) of linear polyacrylamide (LPA) with low molecular mass and poly(N,N‐dimethylacrylamide) (PDMA), which is shown to uniquely combine the superior sieving ability of LPA with the coating ability of PDMA, has been synthesized for application in dsDNA and basic protein separation by CE. The performance of quasi‐IPN on dsDNA separation was determined by polymer concentration, electric field strength, LPA molecular masses and different acrylamide (AM) to N,N‐dimethylacrylamide (DMA) ratio. The results showed that all fragments in Φ×174/HaeIII digest were achieved with a 30 cm effective capillary length at –6 kV at an appropriate polymer solution concentration in bare silica capillaries. Furthermore, EOF measurement results showed that quasi‐IPN exhibited good capillary coating ability, via adsorption from aqueous solution, efficiently suppressing EOF. The effect of the buffer pH values on the separation of basic proteins was investigated in detail. The separation efficiencies and analysis reproducibility demonstrated the good potentiality of quasi‐IPN matrix for suppressing the adsorption of basic proteins onto the silica capillary wall. In addition, when quasi‐IPN was used both as sieving matrix and dynamic coating in bare silica capillaries, higher peak separation efficiencies, and better migration time reproducibility were obtained.  相似文献   

7.
Sun M  Lin JS  Barron AE 《Electrophoresis》2011,32(22):3233-3240
Double-stranded (ds) DNA fragments over a wide size range were successfully separated in blended polymer matrices by microfluidic chip electrophoresis. Novel blended polymer matrices composed of two types of polymers with three different molar masses were developed to provide improved separations of large dsDNA without negatively impacting the separation of small dsDNA. Hydroxyethyl celluloses with average molar masses of ~27 kDa and ~1 MDa were blended with a second class of polymer, high-molar mass (~7 MDa) linear polyacrylamide. Fast and highly efficient separations of commercially available DNA ladders were achieved on a borosilicate glass microchip. A distinct separation of a 1-kb DNA extension ladder (200-40,000 bp) was completed in 2 min. An orthogonal design of experiments was used to optimize experimental parameters for DNA separations over a wide size range. We find that the two dominant factors are the applied electric field strength and the inclusion of a high concentration of low-molar mass polymer in the matrix solution. These two factors exerted different effects on the separations of small dsDNA fragments below 1 kbp, medium dsDNA fragments between 1 and 10 kbp, and large dsDNA fragments above 10 kbp.  相似文献   

8.
The electric field dependence of the electrophoretic mobility of linear DNA fragments in agarose gels was reinvestigated in order to correct the observed mobilities for the different temperatures actually present in the gel during electrophoresis in different electric field gradients. When corrected to a common temperature, the electrophoretic mobilities of DNA fragments less than or equal to 1 kilobase pairs (kbp) in size were independent of electric field strength at all field strengths from 0.6 to 4.6 V/cm if the gels contained less than or equal to 1.4% agarose. The mobilities of larger DNA fragments increased approximately linearly with electric field strength. If the agarose concentration was higher than 2%, the mobilities of all DNA fragments increased with increasing electric field strength. The electric field dependence of the mobility was larger in gels cast and run in Tris-borate buffer (TBE) than in gels cast and run in Tris-acetate buffer (TAE), and was more pronounced in gels without ethidium bromide incorporated in the matrix. Ferguson plots were constructed for the various DNA fragments, both with and without extrapolating the temperature-corrected mobilities to zero electric field strength. Linear Ferguson plots were obtained for all fragments less than or equal to 12 kbp in size in agarose gels less than or equal to 1.4% in concentration if the mobilities were first extrapolated to zero electric field strength. Concave upward curvature of the Ferguson plots was observed for DNA fragments greater than or equal to 2 kbp in size at finite electric field strengths. Convex downward curvature of the Ferguson plots was observed for DNA fragments greater than or equal to 1 kbp in size in agarose gels greater than or equal to 2% in concentration. The mobilities of the various DNA fragments, extrapolated to zero agarose concentration and zero electric field strength, decreased with increasing DNA molecular weight; extrapolating to zero molecular weight gave an "intrinsic" DNA mobility of 2.7 x 10(-4) cm2/Vs at 20 degrees C. The pore sizes of LE agarose gels cast and run in TAE and TBE buffers were estimated from the mobility of the DNA fragments.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
We present a high-throughput single-strand conformation polymorphism (SSCP) method, performed on a commercially available capillary array DNA sequencer. We tested various sieving matrices and electrophoretic conditions, using 51 DNA fragments which included 45 fragments carrying only one single nucleotide polymorphism (SNP), 4 fragments having two SNPs and 2 fragments with insertion or deletion. Resolution of alleles was improved by increasing concentrations of both sieving matrices and buffers, and all examined polymorphisms of DNA fragments were detected, most of them (45 fragments) as clearly split allele peaks in heterozygotes. Allele frequencies of SNPs can be estimated accurately by determining the relative amounts of alleles in pooled DNA. In this method, the turn-around time for the analysis of 96 samples is less than 3 h. These results demonstrate that capillary array-based SSCP is an efficient and accurate technique for the large-scale quantitative analysis of mutations/polymorphisms.  相似文献   

10.
无胶筛分毛细管电泳分析几百个碱基对核酸的条件优化   总被引:1,自引:0,他引:1  
丁晓萍  廖杰  刘晓达  王全立  马立人 《色谱》1998,16(6):485-488
通过正交设计实验综合分析了内充羟丙基甲基纤维素(HPMC)无胶筛分毛细管电泳中的分离场强、HPMC浓度、柱长度和柱内径对核酸分离的影响。结果表明,柱长度越长、柱内径越小、分离场强越小,分离效果越好。考虑实际情况,为能在短时间内使几百个碱基对的核酸得到有效分离,一般选择37cm×75μmi.d.的涂壁毛细管、柱内质量浓度为8g/L的HPMC、场强为324V/cm的条件,并在此种条件下分析了ApoB100基因的低浓度聚合酶链式反应(PCR)扩增产物(710bp)。  相似文献   

11.
Polyacrylamide gel electrophoresis (PAGE) is used frequently for isolation and purification of DNA fragments. In the present study, DNA fragments extracted from polyacrylamide gels showed significant band broadening in capillary electrophoresis (CE). A pHY300PLK (a shuttle vector functioning in Escherichia coli and Bacillus subtilis) marker, which contained nine fragments ranging from 80 to 4870 bp, was separated by PAGE, and each fragment was isolated by phenol/chloroform extraction and ethanol precipitation. After extraction from the polyacrylamide gel, the peaks of the isolated DNA fragments exhibited band broadening in CE, where a linear poly(ethylene oxide) was used as a sieving matrix. The theoretical plate numbers of the DNA fragments contained in the pHY300PLK marker were >106 for all the fragments before extraction. However, the DNA fragments extracted from the polyacrylamide gel showed decreased theoretical plate numbers (5–20 times smaller). The degradation of the theoretical plate number was significant for middle sizes of the DNA fragments ranging from 489 to 1360 bp, whereas the largest and smallest fragments (80 and 4870 bp) had no obvious influence. The band broadening was attributed to contamination of the DNA fragments by polyacrylamide fibers during the separation and extraction process.  相似文献   

12.
This paper theoretically explores the application of electric field flow fractionation (EFFF) for the size-based separation of DNA strands in a microchannel. An axial electric field cannot separate DNA strands in solution because the electrical mobility of the strands is independent of the length. However, lateral electric fields coupled with an axial Poiseuille flow can separate the DNA strands of different sizes. By using regular perturbation analysis, we obtain the effective diffusivity and the mean velocity of the DNA molecules that are undergoing a pressure driven Poiseuille flow in a 2D channel in presence of a lateral electric field. The mean velocities and the dispersion coefficients are then utilized to determine the scaling for length of the channel and the time required for separation of DNA molecules in different parameter regimes. The results show that EFFF can separate DNA strands in the range of 10 kbp that differ in size by about 2.5 kbp in about half an hour in a 1 cm long channel. While DNA strands can be separated by EFFF, the performance of devices based on EFFF seems to be at best comparable to other techniques such as entropic trapping.  相似文献   

13.
王前许旭  戴立信 《中国化学》2006,24(12):1766-1772
Quasi-interpenetrating network of polyacrylamide (PAA) and polyvinylpyrrolidone (PVP) had been successfully used for single-base resolution of double-stranded DNA (0.76 for 123 bp/124 bp) and single-stranded DNA fragments (0.97 for 123 b/124 b) with UV detection. This quasi-IPN (interpenetrating network) sieving matrix showed low viscosity (23.5 mPa·s at 25 ℃) and decreased with increasing temperature. This polymer also exhibited dynamically coating capacity and could be used in the uncoated capillary. The effects of temperature and electric field strength on the DNA separation of quasi-IPN matrix were also investigated and found that the temperature and electric field strength could markedly affected the mobility behavior of DNA fragments. This polymer matrix has also applied to separate the bigger DNA fragments by capillary electrophoresis with UV detection. Under the denaturing conditions, this matrix separated the samples with last fragment of 1353 base in 40 rain, in which the doublet of 309/310 base was partial separated and the resolution was 0.88.  相似文献   

14.
L Song  D Fang  R K Kobos  S J Pace  B Chu 《Electrophoresis》1999,20(14):2847-2855
The separation of double-stranded DNA (dsDNA) fragments in polymethylmethacrylate (PMMA) capillary electrophoresis (CE) chips by using E99P69E99 as a separation medium has been demonstrated. The PMMA CE chips were simply manufactured by micromachining and adhesive tape sealing. To make the separation channel compatible with the separation medium, a dynamic nonionic surfactant coating procedure was developed, which made the plastic separation channel sufficiently hydrophilic to allow the separation medium to fill the channel by capillary action. Subsequent separation of DNA fragments was successful with a separation efficiency of the order of 10(4) theoretical plates over an effective separation distance of 1.5 cm. By using an applied electric field strength of 200 V/cm, the separation of low DNA mass ladder was completed within 5 min. The simple coating procedure, together with the self-assembled viscosity-adjustable separation medium, should be useful to meet some of the essential requirements for developing single-use disposable CE chips. Coating the channels with polymer blends of PMMA and the separation medium also showed promise.  相似文献   

15.
Applicability of modern microfabrication technology to electrophoresis microchips initiated a rapidly moving interdisciplinary field in analytical chemistry. Electric field mediated separations in microfabricated devices (electrophoresis microchips) are significantly faster than conventional gel electrophoresis, usually completed in seconds to minutes. Electrophoretic separation of DNA molecules on microfabricated devices proved to have the potential to improve the throughput of analysis by orders of magnitude. The flexibility of electrophoresis microchips allows the use of a plethora of separation matrices and conditions. In this paper, we report on electric field mediated separation of fluorescent intercalator-labeled dsDNA fragments in polyvinylpyrrolidone matrix-filled microchannel structures. The separations were detected in real time by a confocal, single-point laser-induced fluorescence/photomultiplier setup. Effects of the sieving matrix concentration (Ferguson plot), migration characteristics (reptation plot), separation temperature (Arrhenius plot), as well as applied electric field strength and intercalator concentration on the separation of DNA fragments are thoroughly discussed.  相似文献   

16.
《Analytical letters》2012,45(9):2039-2053
Abstract

In this study, a method for the separation and determination of basic analytes in aqueous capillary electrophoresis (CE) was developed based on high electric field strengths and ionic liquids (ILs). The resulting electric field strengths ranged from 500 to 1000 V/cm. Trishydroxymethylaminomethane (Tris) and sodium cholate (SC) were used as main electrolytes. The ionic liquids 1‐ethyl‐3‐methylimidazoium tetrafluoroborate (1E‐3MI‐TFB) and 1‐butyl‐3‐methylimidazoium tetrafluoroborate (1B‐3MI‐TFB) were used as modifiers to improve the separation efficiency and selectivity. It was shown that increasing the applied electric field strengths not only caused short analysis time, but also did not induce excessive Joule heating in the capillary when ionic liquids were used as modifiers. The susceptibility to high electric field of separation efficiency in capillary electrophoresis, with the effect of ionic liquids, was subsequently discussed, and the developed method was used to analyze three model analytes in Sinacalia tangutica. The accurate results illustrated that high electric field strength with the ionic liquids was feasible in CE.  相似文献   

17.
We have designed and constructed a microfabricated device for separation of double-stranded DNA fragments using a crosslinked sieving medium and spatially selective extraction of the desired fraction. Based on measuring the width and spacing of migrating bands, a narrow side channel is constructed perpendicular to the separation channel to collect the DNA fragments of interest. This selective collection technique was tested using a 100 base pair double-stranded DNA ladder. We successfully demonstrate selective extraction of the desired fragment with minimal interference from the adjacent bands in an electric field of 31 V/cm. We also achieve extraction of multiple DNA fragments using an array of microelectrodes in this side channel. The device uses cross-linked polyacrylamide gel matrix, allowing the separation to be performed in a distance of 1 cm or less and at a low electric field strength. Together with on-chip electrode, this design is amenable to integration with reaction chambers into a single device for portable genetic-based analysis.  相似文献   

18.
Huang MF  Hsu CE  Tseng WL  Lin YC  Chang HT 《Electrophoresis》2001,22(11):2281-2290
Separations of phiX-174/HaeIII DNA restriction fragments have been performed in the presence of electroosmotic flow (EOF) using five different polymer solutions, including linear polyacrylamide (LPA), poly(ethylene oxide) (PEO), hydroxypropylcellulose (HPC), hydroxyethylcellulose (HEC), and agarose. During the separation, polymer solutions entered the capillary by EOF. When using LPA solutions, bulk EOF is small due to adsorption on the capillary wall. On the other hand, separation is faster and better for the large DNA fragments (> 872 base pairs, bp) using derivative celluloses and PEO solutions. Several approaches to optimum resolution and speed by controlling EOF and/or altering electrophoretic mobility of DNA have been developed, including (i) stepwise changes of ethidium bromide (0.5-5 microg/mL), (ii) voltage programming (125-375 V/cm), (iii) use of mixed polymer solutions, and (iv) use of high concentrations of Tris-borate (TB) buffers. The DNA fragments ranging from 434 to 653 bp that were not separated using 2% PEO (8,000,000) under isocratic conditions have been completely resolved by either stepwise changes of ethidium bromide or voltage programming. Compared to PEO solutions, mixed polymer solutions prepared from PEO and HEC provide higher resolving power. Using a capillary filled with 600 mM TB buffers, pH 10.0, high-speed (< 15 min) separation of DNA (pBR 322/HaeIII digest, pBR 328/ Bg/l digest and pBR 328/Hinfl digest) has been achieved in 1.5% PEO.  相似文献   

19.
A capillary formed by connecting a 9.7 cm‐long separation capillary with id 25 μm with an auxiliary 22.9 cm‐long capillary with id 100 μm (coupled capillary) was tested for electrophoretic separation at high electric field intensities. The coupled capillary was placed in the cassette of a standard electrophoresis apparatus. It was used in the short‐end injection mode for separation of a mixture of dopamine, noradrenaline, and adrenaline in a BGE of 20 mM citric acid/NaOH, pH 3.2. An intensity of 2.7 kV/cm was attained in the separation part of the capillary at a separation voltage of 30 kV, which is 2.9 times more than maximum intensity value attainable in a capillary with the same length with uniform id. At these high electric field intensities, the migration times of the tested neurotransmitters had values of 12.3–13.3 s and the attained separation efficiency was between 2350 and 2760 plates/s. It is thus demonstrated that an effective separation instrument ‐ a coupled capillary ‐ can be used for very rapid separation in combination with standard, commercially available instrumentation.  相似文献   

20.
With the complete sequencing of the human genome, there is a growing need for rapid, highly sensitive genetic mutation detection methods suitable for clinical implementation. DNA-based diagnostics such as single-strand conformational polymorphism (SSCP) and heteroduplex analysis (HA) are commonly used in research laboratories to screen for mutations, but the slab gel electrophoresis (SGE) format is ill-suited for routine clinical use. The translation of these assays from SGE to microfluidic chips offers significant speed, cost, and sensitivity advantages; however, numerous parameters must be optimized to provide highly sensitive mutation detection. Here we present a methodical study of system parameters including polymer matrix, wall coating, analysis temperature, and electric field strengths on the effectiveness of mutation detection by tandem SSCP/HA for DNA samples from exons 5-9 of the p53 gene. The effects of polymer matrix concentration and average molar mass were studied for linear polyacrylamide (LPA) solutions. We determined that a matrix of 8% w/v 600 kDa LPA provides the most reliable SSCP/HA mutation detection on chips. The inclusion of a small amount of the dynamic wall-coating polymer poly-N-hydroxyethylacrylamide in the matrix substantially improves the resolution of SSCP conformers and extends the coating lifetime. We investigated electrophoresis temperatures between 17 and 35 degrees C and found that the lowest temperature accessible on our chip electrophoresis system gives the best condition for high sensitivity of the tandem SSCP/HA method, especially for the SSCP conformers. Finally, the use of electrical fields between 350 and 450 V/cm provided rapid separations (<10 min) with well-resolved DNA peaks for both SSCP and HA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号