首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A useful technique to bifunctionalize the secondary hydroxyl faces of cyclodextrins is described. Regioselective2A,2D-disulfonylations ofcyclodextrins were achieved by reacting cyclodextrins with a combinationof a novel disulfonyl imidazole reagent and molecular sieves inN,N-dimethylformamide. The resulting disulfonates were convertedto 2A,3A,2D,3D-dimannoepoxy-cyclodextrins and3A,3D-diamino-3A,3D-dideoxy-(2AS,3AS),(2DS,3DS)-cyclodextrins, which contain twofunctional groups on the periphery of the molecules.  相似文献   

2.
Theoretical multireference configuration interaction (MRDCI) calculations on the excited 1Σ+ and 1Π states of NaLi are presented. They improve the results of a previous study by two of the present authors, resolve some differences with other theoretical results and lead to overall good agreement with experimental observations. To extend the experimental data base of electronic states in NaLi, a previously unknown 1Σ+ state is investigated by polarisation labelling spectroscopy. Comparison with accompanying and previous theoretical calculations leads to a conclusion that the observed system consists of two band systems switching smoothly from one adiabatic state to the other and allows assignment of the bands as 51Σ+ ← X1Σ+ in the lower energy part and to 61Σ+ ← X1Σ+ for higher energies.  相似文献   

3.
The Sr3Y(PO4)3:0.05Sm3+, Sr3Y(PO4)3:0.005Tb3+, and Sr3Y(PO4)3:0.005Tb3+, 0.05Sm3+ phosphors were synthesized using a conventional solid-state reaction technique at high temperature and their photoluminescence properties under ultraviolet (UV) excitation were studied. We observed the UV sensitization of Sm3+ emission (565, 600, and 648 nm) by Tb3+ in Sr3Y(PO4)3:0.005Tb3+, 0.05Sm3+, that leads to a white light emission with the CIE coordinate (0.367, 0.312) of Sr3Y(PO4)3:0.005Tb3+, 0.05Sm3+ phosphor under UV excitation. The emission is a result of partial energy transfer from Tb3+ to Sm3+, which is discussed in detail in terms of the corresponding excitation and emission spectra.  相似文献   

4.
《Solid State Sciences》2012,14(2):236-240
LaGaO3:Tm3+, Yb3+ powder was synthesized by a high-energy ball milling (HEB) and a conventional solid state reaction (SSR). The X-ray diffraction patterns confirmed the LaGaO3:Tm3+, Yb3+ powder phosphors to have an orthorhombic structure. The spectrum consisted of 1G4 → 3H6, weak 1G4 → 3F4, and intense 3H4 → 3H6 transition bands within the f12 configuration of Tm3+, together with the 2F5/2 → 2F7/2 transition of Yb3+. Up-converted emission of the LaGaO3:Tm3+, Yb3+ powders were observed under laser diode excitation of 975 nm. The PL intensity of the HEB-LaGaO3:Tm3+, Yb3+ powders sintered at 1300 °C were higher than those of all LaGaO3:Tm3+, Yb3+ powder samples examined. The energy transition probability of HEB-LaGaO3:Tm3+, Yb3+ powders are higher than that of the SSR-LaGaO3:Tm3+, Yb3+ powders. Compared to the solid state reaction method, synthesis by high-energy ball milling is simple and provides improved crystallinity of the host.  相似文献   

5.
By using a hydrothermal method, a series of Eu3+ concentration dependent GdF3 nanocrystals have been synthesized. The crystalline structures of samples are characterized by XRD patterns, the morphology and size of the samples are illustrated by FE-SEM images, and the optical properties of the samples are presented by PL excitation and emission spectra. The energy transfer from host Gd3+ to Eu3+ is observed in the Eu3+ doped GdF3 nanocrystals. The optical properties of Eu3+ and the energy transfer efficiency from host Gd3+ to Eu3+ are discussed on the basis of the Eu3+ concentration dependent integrated PL excitation and emission spectra of Gd3+ and Eu3+. The discussion on optical properties of Eu3+ and the energy transfer from Gd3+ to Eu3+ is meaningful to design and synthesize Gd3+ based compounds.  相似文献   

6.
(1D-3H NMR) of PK 11195 3H gives a complex spectrum. Homonuclear 2D-3H NMR (COSY and J. Resolved) gives useful information such as tritium chemical shifts, 3H-3H and 3H-1H coupling constant, percentage of isotopomers and specific activity.  相似文献   

7.
Relativistic calculations of the low-lying electronic states of the ZnO molecule are performed for the Λ–Σ states, 1Σ+, 1Π, 1Δ, 3Π and 3Σ, at the CCSD(T) or MRCI level, using scalar relativistic energy-consistent pseudopotentials, and the EPCISO method for spin–orbit CI coupling. The ZnO ground state is assigned to 0+ symmetry and has 1Σ+ character around the equilibrium region. The spectroscopic constants (re, ωe) of the 0+ ground state are in good agreement with experimental results. Interpenetration of the vibrational levels of the two lowest 0+ states is also shown.  相似文献   

8.
Excitation of Tb3+ and Eu3+ in DMSO with 487 mμ, which corresponds to the 7F65D4 transition of Tb3+, is accompanied by a reduction in the fluorescence efficiency of Tb3+ as [Eu3+] increases and by the appearance of a weak emission from Eu3+. An average rate constant for both the fluorescence quenching of Tb3+ and the energy transfer from Tb3+ to Eu3+ with subsequent emission from the latter, was found to be (2.2 ± 0.4) × 103 M?1 sec?1.  相似文献   

9.
A family of monodisperse YF3, YF3:Ce3+ and YF3:Ce3+/Ln3+ (Ln=Tb, Eu) mesocrystals with a morphology of a hollow spindle can be synthesized by a solvothermal process using yttrium nitrate and NH4F as precursors. The effects of reaction time, fluorine source, solvents, and reaction temperature on the synthesis of these mesocrystals have been studied in detail. The results demonstrate that the formation of a hollow spindle‐like YF3 can be ascribed to a nonclassical crystallization process by means of a particle‐based reaction route in ethanol. It has been shown that the fluorine sources selected have a remarkable effect on the morphologies and crystalline phases of the final products. Moreover, the luminescent properties of Ln3+‐doped and Ce3+/Ln3+‐co‐doped spindle‐like YF3 mesocrystals were also investigated. It turns out that Ce3+ is an efficient sensitizer for Ln3+ in the spindle‐like YF3 mesocrystals. Remarkable fluorescence enhancement was observed in Ce3+/Ln3+‐co‐doped YF3 mesocrystals. The mechanism of the energy transfer and electronic transition between Ce3+ and Ln3+ in the host material of YF3 mesocrystals was also explored. The cytotoxicity study revealed that these YF3‐based nanocrystals are biocompatible for applications, such as cellular imaging.  相似文献   

10.
The multireference configuration interaction (MRCI) electronic energy calculations with different basis sets have been performed on the ground state (X1Σ) and three low-lying excited states (3Σ, 1Π and 3Π) of HgCd dimer. The obtained potential energy curves (PECs) are fit to analytical potential energy functions (APEFs) using the Murrell–Sorbie potential function. Spectroscopic constants are calculated using the APEFs. Based on the PECs, the vibrational levels of each state are predicted. Our equilibrium positions of the X1Σ state and 3Π state are in excellent agreement with the experimental reports.  相似文献   

11.
The emission from the first negative system, N2+(B 2Σ+u)→N2+(X 2Σ+g)+, is studied in the flowing nitrogen afterglow of a DC arc plasma. Investigation of the spectrum shows overpopulation of the vibrational levels 6 and 7 of the excited molecular ion, N2+(B 2Σ+u). Selective excitation of these levels is explained by a charge exchange reaction between atomic ions in the ground state and metastable molecules in the N2(A 3Σ+u) state. The emitted intensity of the first negative system is shown to be linear with electron density ne for ne>2×1016 m−3, a higher-order dependence exists below this value. This is consistent with population of N2+(B 2Σ+u) by atomic ions, N+.  相似文献   

12.
Developing multiplex sensing technique is of great significance for fast sample analysis. However, the broad emissions of most chemiluminescence(CL) luminophores make the multiplex CL analysis be difficult. In this work, a simple and sensitive CL analytical method has been developed for the simultaneous determination of Tb3+and Eu3+thanking to their narrow band emission. The technique was based on a mixed CL system of periodate(IO4-)-hydrogen peroxide(...  相似文献   

13.
Phosphorescence has been simultaneously observed from both a 3π, π* and a 3n,π* level of 5-methylbicyclo-[4.3.01,5non-1-en-3-one. The emission from the higher energy 3n,π* state, which is in thermal equilibrium with the 3π,π* state, is quenched by lowering the temperature and also quenched by increasing the solvent polarity so as to raise the energy of the 3n,π* state relative to the 3π,π* state.  相似文献   

14.
In this work, a latent energy-transfer process in traditional Eu3+,Tb3+-doped phosphors is proposed and a new class of Eu3+,Tb3+-doped Na4CaSi3O9 (NCSO) phosphors is presented which is enabled by luminescence decay dynamics that optimize the electron-transfer energy process. Relative to other Eu3+,Tb3+-doped phosphors, the as-synthesized Eu3+,Tb3+-doped NCSO phosphors show improved large-scale tunable emission color from green to red upon UV excitation, controlled by the Tb3+/Eu3+ doping ratio. Detailed spectroscopic measurements in the vacuum ultraviolet (VUV)/UV/Vis region were used to determine the Eu3+–O2− charge-transfer energy, 4f–5d transition energies, and the energies of 4f excited multiplets of Eu3+ and Tb3+ with different 4fN electronic configurations. The Tb3+→Eu3+ energy-transfer pathway in the co-doped sample was systematically investigated, by employing luminescence decay dynamics analysis to elucidate the relevant energy-transfer mechanism in combination with the appropriate model simulation. To demonstrate their application potential, a prototype white-light-emitting diode (WLED) device was successfully fabricated by using the yellow luminescence NCSO:0.03Tb3+, 0.05Eu3+ phosphor with high thermal stability and a BaMgAl10O17:Eu2+ phosphor in combination with a near-UV chip. These findings open up a new avenue to realize and develop multifunctional high-performance phosphors by manipulating the energy-transfer process for practical applications.  相似文献   

15.
The structure and complex formation of concentrated aqueous gallium(III) bromide (GaBr3) solutions have been investigated over a temperature range 80–333 K by Raman spectroscopy, X-ray absorption fine structure (XAFS), and X-ray diffraction. The Raman spectra obtained at various [Br?]/[Ga3+] molar ratios and temperatures have shown that complex formation between Ga3+ and Br? occurs as a predominant species, with [GaBr4]? at [Ga3+] as high as 1~2 M (M = mol?dm ?3) and [Br?]/[Ga3+] ratios > ~2, and that cooling of the solutions favors the formation of the aqua Ga3+. The intermediate species were not seen in the Raman spectra. The XAFS data have revealed that the aqua complex has a sixfold coordination as [Ga(H2O)6]3+ with a Ga3+–H2O distance of (1.96 ± 0.02) Å, whereas the [GaBr4]? complex has a Ga3+–Br? distance of (2.33± 0.02) Å, and that vitrification of the aqueous GaBr3 solution at liquid nitrogen temperature shifts the equilibrium toward the aqua complex. The X-ray diffraction data at different subzero temperatures have shown a tendency of decreasing Ga3+–Br? and increasing Ga3+–H2O interactions with lowering temperature, confirming the preference of aqua Ga3+ in the supercooled liquid state as well as in the glassy state. The Ga3+–H2O distance of ~1.8 Å for the tetrahedral coordination was found in a 2.01 M gallium(III) bromide solution with a [Br?]/[Ga3+] ratio of 3.7 and gradually increased to a value of 1.92 Å for octahedral geometry with decreasing temperature, suggesting that equilibrium shifts from [GaBr4]? to [Ga(H2O)6]3+ through intermediate species, [GaBr n ](3?n)+ (n = 2 and 3). The Ga3+–Br? and Br?–Br? distances within [GaBr4]? with an almost tetrahedral symmetry are (2.35± 0.02) and (3.82± 0.03) Å, respectively. The Ga3+ has the second hydration shell at (4.03± 0.03) Å and the hydration of Br? is characterized with a Br?–H2O distance of (3.35± 0.02) Å at all temperatures investigated.  相似文献   

16.
Chemiluminescence (CL) during oxidation of organosodium compounds of anthracene and pyrene in THF by a Ru(bpy)3 2+ complex was studied. Excited singlet states of anthracene and pyrene (1R*) and a Ru(bpy)3 2+* complex were identified as CL emitters. A mechanism for the generation of the excited states in electron transfer reactions resulting in the formation of Ru(bpy)3 2+* and triplet states of hydrocarbons (3R*) was proposed. The direct formation of a singlet state from the radical anion is energetically impossible. Therefore1R* is generated in the triplet-triplet annihilation3R*+3R*1R*+R, whereas Ru(bpy)3 2+* can be formed in the reaction of Ru(bpy)3 3+ with Ru(bpy)3 1+ or by the energy transfer from1R* to Ru(bpy)3 2+. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 609–611, March, 1997.  相似文献   

17.
A series of luminescent ion exchanged zeolite are synthesized by introducing various ions into NaY zeolite. Monometal ion (Eu3+, Tb3+, Ce3+, Y3+, Zn2+, Cd2+, Cu2+) exchanged zeolite, rare‐earth ion (Eu3+, Tb3+, Ce3+) exchanged zeolite modified with Y3+ and rare‐earth ion (Eu3+, Tb3+, Ce3+) exchanged zeolite modified with Zn2+ are discussed here. The resulting materials are characterized by Fourier transform infrared spectrum radiometer (FTIR), XRD, scanning electronic microscope (SEM), PLE, PL and luminescence lifetime measurements. The photoluminescence spectrum of NaY indicates that emission band of host matrix exhibits a blueshift of about 70 nm after monometal ion exchange process. The results show that transition metal ion exchanged zeolites possess a similar emission band due to dominant host luminescence. A variety of luminescence phenomenon of rare‐earth ion broadens the application of zeolite as a luminescent host. The Eu3+ ion exchanged zeolite shows white light luminescence with a great application value and Ce3+ exchanged zeolite steadily exhibits its characteristic luminescence in ultraviolet region no matter in monometal ion exchanged zeolite or bimetal ions exchanged zeolite.  相似文献   

18.
As an Hg-free lamp using phosphor, the Bi^3+ and EH^3+ co-doped Y2O2S phosphors were prepared and their luminescence properties under vacuum ultraviolet(VUV) excitation were investigated. The VUV photoluminescent intensity of Y2O2S:Eu^3+ was weak, however, considerably stronger red emission at 626 nm with good color purity was observed in Y2O2S:Eu^3+,Bi^3+ systems. Investigation on the photoluminescence reveals that the strong VUV luminescence of Y2O2S:Eu^3+,Bi^3+ at 147 nm is mainly because the Bi^3+ acts as a medium and effectively performs the energy transfer process: Y^3+-O^2-→Bi^3+→Eu^3+, while the intense emission band at 172 nm is attributed to the absorption of the characteristic ^1So-^1P1 transition of Bi^3+ and the direct energy transfer from Bi^3+ to Eu^3+. The Y2O2S:Eu^3+,Bi^3+ shows excellent VUV optical properties compared with the commercial (Y,Gd)BO3:Eu^3+. Thus, the Y2O2S:Eu^3+,Bi^3+ can be a potential red VUV-excited candidate applied in Hg-free lamps for backlight of liquid crystal display.  相似文献   

19.
A hydrophobic organic monomer GRBE with a polymerizable methacrylester moiety had been synthesized by reaction of rhodamine B‐ethanediamine with glycidyl methacrylate. A water‐soluble polymeric chemosensor poly(VP‐GRBE) had been prepared via copolymerization with a hydrophilic comonomer (vinylpyrrolidone) and GRBE, which was able to sense environmentally poisonous cations in completely aqueous media. The chemosensor was a derivative of rhodamine B, which behaved as a fluorescent and chromogenic sensor toward various heavy cations, particularly Cr3+, Fe3+, and Hg2+. Titration curves of Cr3+, Fe3+, and Hg2+ were constructed using rapid, cheap, and widely available technique of fluorescence spectroscopies. The detection limits for Cr3+, Fe3+, or Hg2+ ions were found to be 2.20 × 10?12, 2.39 × 10?12, and 1.11 × 10?12 mol/l in the same medium, respectively. Moreover, a colorimetric response from the polymeric chemosensor permitted the detection of Cr3+, Hg2+, or Fe3+ by “naked eye” because of the development of a pink or brown yellow color when Cr3+, Hg2+, or Fe3+ cations interacted with the copolymer in aqueous media. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
In order to create near-infrared (NIR) luminescent lanthanide complexes suitable for DNA-interaction, novel lanthanide dppz complexes with general formula [Ln(NO3)3(dppz)2] (Ln = Nd3+, Er3+ and Yb3+; dppz = dipyrido[3,2-a:2′,3′-c]phenazine) were synthesized, characterized and their luminescence properties were investigated. In addition, analogous compounds with other lanthanide ions (Ln = Ce3+, Pr3+, Sm3+, Eu3+, Tb3+, Dy3+, Ho3+, Tm3+, Lu3+) were prepared. All complexes were characterized by IR spectroscopy and elemental analysis. Single-crystal X-ray diffraction analysis of the complexes (Ln = La3+, Ce3+, Pr3+, Nd3+, Eu3+, Er3+, Yb3+, Lu3+) showed that the lanthanide’s first coordination sphere can be described as a bicapped dodecahedron, made up of two bidentate dppz ligands and three bidentate-coordinating nitrate anions. Efficient energy transfer was observed from the dppz ligand to the lanthanide ion (Nd3+, Er3+ and Yb3+), while relatively high luminescence lifetimes were detected for these complexes. In their excitation spectra, the maximum of the strong broad band is located at around 385 nm and this wavelength was further used for excitation of the chosen complexes. In their emission spectra, the following characteristic NIR emission peaks were observed: for a) Nd3+: 4F3/24I9/2 (870.8 nm), 4F3/24I11/2 (1052.7 nm) and 4F3/24I13/2 (1334.5 nm); b) Er3+: 4I13/24I15/2 (1529.0 nm) c) Yb3+: 2F5/22F7/2 (977.6 nm). While its low triplet energy level is ideally suited for efficient sensitization of Nd3+ and Er3+, the dppz ligand is considered not favorable as a sensitizer for most of the visible emitting lanthanide ions, due to its low-lying triplet level, which is too low for the accepting levels of most visible emitting lanthanides. Furthermore, the DNA intercalation ability of the [Nd(NO3)3(dppz)2] complex with calf thymus DNA (CT-DNA) was confirmed using fluorescence spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号