首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of nonthermal ion distribution and finite dust temperature are incorporated in the investigation of nonlinear dust acoustic waves in an unmagnetized dusty plasma. Sagdeev pseudopotential method which takes into account the full nonlinearity of plasma equations, is used here to study solitary wave solutions. Possibility of co-existence of refractive and compressive solitons as a function of Mach number, dust temperature and concentration of nonthermal ions, is considered. For the fixed value of nonthermal ions, it is found that the effect of increase in dust temperature is to reduce the range of co-existence of compressive and refractive solitons. Particular concentration of nonthermal ions results in disappearance of refractive solitons while the decrease in dust temperature, at this concentration restores the lost refractive solitons.  相似文献   

2.
《Physics letters. A》1998,247(6):403-409
The effect of dust charging and the influence of its adiabatic variation on dust-acoustic solitary waves is further studied. A more reasonable normalization for the dust velocity by the dust-acoustic speed is adopted, which varies self-consistently with the system parameters. By employing the reductive perturbation technique we derive small-amplitude dust-acoustic solitons with varying dust charges. The Sagdeev potential shows that only the rarefactive solitary waves exist when the Mach number lies within an appropriate regime depending on the system parameters. An approximate similarity law is obtained and discussed in this dust-charge-fluctuation system.  相似文献   

3.
4.
H. Alinejad 《Physics letters. A》2011,375(6):1005-1009
The properties of arbitrary amplitude dust-acoustic (DA) solitary waves (SWs) in a dusty plasma containing warm adiabatic dust fluid, isothermal electrons and ions following flat-topped velocity distribution is studied by the pseudo-potential approach. The effects of dust temperature and flat-trapped ions are found to significantly modify the basic features of DA-SWs as well modify the parametric regime for the existence of rarefactive solitary waves. The pseudo-potential for small amplitude limit is also analytically analyzed, and the numerical results are found to agree with analytical results.  相似文献   

5.
薛具奎  郎和 《中国物理》2003,12(5):538-541
The effect of dust charge variation on the dust-acoustic solitary structures is investigated in a warm magnetized two-ion-temperature dusty plasma consisting of a negatively and variably charged extremely massive dust fluid and ions of two different temperatures. It is shown that the dust charge variation as well as the presence of a second component of ions would modify the properties of the dust-acoustic solitary structures and may exite both dust-acoustic solitary holes (soliton waves with a density dip) and positive solitons (soliton waves with a density hump).  相似文献   

6.
O RAHMAN  A A MAMUN 《Pramana》2013,80(6):1031-1039
A theoretical investigation of dust-acoustic solitary waves in three-component unmagnetized dusty plasma consisting of trapped electrons, Maxwellian ions, and arbitrarily charged cold mobile dust was done. It has been found that, owing to the departure from the Maxwellian electron distribution to a vortex-like one, the dynamics of small but finite amplitude dust-acoustic (DA) waves is governed by a nonlinear equation of modified Korteweg–de Vries (mKdV) type (instead of KdV). The reductive perturbation method was employed to study the basic features (amplitude, width, speed, etc.) of DA solitary waves which are significantly modified by the presence of trapped electrons. The implications of our results in space and laboratory plasmas are briefly discussed.  相似文献   

7.
Electron acoustic(EA) solitary waves(SWs) are studied in an unmagnetized plasma consisting of hot electrons(following Cairns-Tsalli distribution), inertial cold electrons, and stationary ions.By employing a reductive perturbation technique(RPT), the nonlinear Korteweg–de Vries(KdV) equation is derived and its SW solution is analyzed. Here, the effects of plasma parameters such as the nonextensivity parameter(q), the nonthermality of electrons(α), and the cold-to-hot electron density ratio(β) are investigated.  相似文献   

8.
9.
The nonlinear propagation of the dust-acoustic (DA) waves in a strongly coupled dusty plasma containing Maxwellian electrons, nonthermal ions, and positively charged dust is theoritically investigated by a Burgers equation. The effects of the polarization force (which arises due to the interaction between electrons and highly positively charged dust grains) and nonthermal ions are studied. DA shock waves are found to exist with positive potential only. It represents that the strong correlation among the charged dust grains is a source of dissipation, and is responsible for the formation of DA shock waves. The effects of polarization force and nonthermal ions significantly modified the basic features of DA shock waves in strongly coupled dusty plasma.  相似文献   

10.
The excitation and propagation of finite-amplitude low-frequency solitary waves are investigated in an argon plasma impregnated with kaolin dust particles. A nonlinear longitudinal dust acoustic solitary wave is excited by pulse modulating the discharge voltage with a negative potential. It is found that the velocity of the solitary wave increases and the width decreases with the increase of the modulating voltage, but the product of the solitary wave amplitude and the square of the width remains nearly constant. The experimental findings are compared with analytic soliton solutions of a model Korteveg-de Vries equation.  相似文献   

11.
The Korteweg-de Vries equation for a weakly relativistic ion acoustic wave propagating in oollisionless plasma containing nonthermal electron, positron and warm ion is derived. The effects of the ion temperature, nonthermal parameter and relativistic effect on the amplitude, width and energy of soliton are studied.  相似文献   

12.
We investigate particle-wave microdynamics in the large amplitude self-excited dust acoustic wave at the discrete level through direct visualization. The wave field induces dust oscillations which in turn sustain wave propagation. In the regular wave with increasing wave amplitude, dust-wave interaction with uncertain temporary crest trapping and dust-dust interaction lead to the transition from cyclic to disordered dust motion associated with the liquid to the gas transition, and anisotropic non-Gaussian heating. In the irregular wave, particle trough-trapping is also observed, and the heating is nearly Gaussian and less anisotropic.  相似文献   

13.
Interaction of nonplanar ion-acoustic solitary waves is an important source of information for studying the nature and characteristics of ion-acoustic solitary waves (IASWs). The head-on collision between two cylindrical/spherical IASWs in un-magnetized plasmas comprising of nonthermal distributed electrons and warm ions is investigated using the extended version of Poincaré–Lighthill–Kuo (PLK) perturbation method. How the interactions are taking place in cylindrical and spherical geometries are shown numerically. Analytical phase shifts are derived for nonplanar geometry. The effects of the ion to electron temperature parameter and the nonthermal electrons parameter on the phase shift are studied. It is shown that the properties of the interaction of IASWs in different geometries are very different.  相似文献   

14.
陈建宏 《中国物理 B》2009,18(6):2121-2128
For two-dimensional unmagnetized dusty plasmas with many different dust grain species, a Kadomtsev--Petviashvili (KP) equation, a modified KP (mKP) equation and a coupled KP(cKP) equation for small, but finite amplitude dust-acoustic solitary waves are obtained for different physical conditions respectively. The influence of an arbitrary dust size distribution described by a polynomial expressed function on the properties of dust-acoustic solitary waves is investigated numerically. How dust size distribution affects the sign and the magnitude of nonlinear coefficient A(D) of KP (mKP) equation is also discussed in detail. It is noted that whether a compressive or a rarefactive solitary wave exists depends on the dust size distribution in some dusty plasmas.  相似文献   

15.
段文山 《中国物理》2004,13(5):598-601
The effect of dust charging and the influence of its adiabatic variation on dust acoustic waves is investigated. By employing the reductive perturbation technique we derived a Zakharov-Kuznetsov (ZK) equation for small amplitude dust acoustic waves. We have analytically verified that there are only rarefactive solitary waves for this system. The instability region for one-dimensional solitary wave under transverse perturbations has also been obtained. The obliquely propagating solitary waves to the z-direction for the ZK equation are given in this paper as well.  相似文献   

16.
In the present research paper, the study of the head-on collision between two ion thermal solitary waves is investigated in a two-fluid (i.e., a pair-ion) plasma consisting of positive and negative ions as well as a fraction of stationary (positively/negatively) charged dust impurities, using the extended Poincaré-Lighthill-Kuo method. The effects of the concentration of charged dust impurities and the positive-to-negative ion temperature ratio on the solitary waves collisions are investigated. It is found that the phase shift is significantly affected by the presence of the positive-to-negative ion temperature ratio and positively/negatively charged dust grains.  相似文献   

17.
The nonlinear propagation of dust-acoustic waves in an obliquely propagating magnetized dusty plasma, containing Maxwellian distributed ions of distinct temperatures (namely lower and higher temperature Maxwellian ions), negatively charged mobile dust grains, and Maxwellian electrons, is rigorously investigated and analyzed by deriving the Zakharov-Kuznetsov equation. It is investigated that the characteristics of the dustacoustic solitary waves are significantly modified by the external magnetic field, relative ion and electron temperature-ratio, and respective number densities of two population of ions. The implications of the results obtained from this analysis in space and laboratory dusty plasmas are briefly discussed.  相似文献   

18.
Propagation regimes of an arbitrary amplitude dust acoustic solitary wave in a dusty plasma with an ion beam are analyzed by employing the Sagdeev potential technique. Two domains of the Mach numbers are defined depending on the ion beam and plasma parameters. Only a rarefactive soliton solution is found in a low velocity regime. Numerical solutions are presented that illustrate the dependence of soliton characteristics on practically interesting plasma and ion beam parameters. The findings of this investigation could be useful in understanding the nonlinear interaction of external ion beam and dusty plasma observed in laboratory plasma experiments.  相似文献   

19.
By using reductive perturbation method, the nonlinear propagation of dust-acoustic waves in a dusty plasma (containing a negatively charged dust fluid, Boltzmann distributed electrons and two-temperature nonthermal ions) is investigated. The effects of two-temperature nonthermal ions on the basic properties of small but finite amplitude nonlinear dust-acoustic waves are examined. It is found that two-temperature nonthermal ions affect the basic properties of the dust-acoustic solitary waves. It is also observed that only compressive solitary waves exist in this system.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号