首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactions between carbon dioxide and fluorine were examined at temperatures of 303-523 K under various pressure and mixture ratios of both gases. Reactions were carried out similarly under the existence of NaF, CsF and EuF3.After the reaction, fluorine was removed and the reaction products were analyzed using FT-IR, GC/FT-IR and GC/MS. The major products were CF3OF, COF2, CF4 and CF2(OF)2.The best yield of COF2 was 11.1% under the reaction condition of CO2/F2 = 76 kPa/76 kPa with temperature of 498 K for 72 h in a direct reaction. The formation rate of COF2 in the direct reaction was estimated as 0.232 dm3 mol−1 h−1 under the reaction conditions of CO2/F2 = 76 kPa/76 kPa, at 498 K. In the presence of CsF, it was estimated as 1.88 dm3 mol−1 h−1 at CO2/F2 = 76 kPa/76 kPa at 498 K.The activation energy of the COF2 formation in the direct reaction was estimated as 45.7 kJ mol−1 at CO2/F2 = 76 kPa/76 kPa at 498 K. In addition, 24.2 and 38.9 kJ mol−1 were evaluated at CO2/F2 = 76 kPa/76 kPa at 498 K, respectively, in the presence of CsF and EuF3.  相似文献   

2.
Du J  Hao L  Li Y  Lu J 《Analytica chimica acta》2007,582(1):98-102
A simple flow injection chemiluminescence (FI-CL) method was proposed for the determination of nitrofurazone. Strong CL signal was generated during the reaction of nitrofurazone with H2O2 and N-bromosuccinimide (NBS) in alkaline condition. The CL signal was proportional to the nitrofurazone concentration in the range 1.0 × 10−7 to 1.0 × 10−5 g mL−1. The detection limit was 2 × 10−8 g mL−1 nitrofurazone and the relative standard deviation was less than 4% (6.0 × 10−6 g mL−1 nitrofurazone, n = 11). The proposed method was successfully applied to the determination of nitrofurazone in compound furacillin nasal drops, human plasma and urine samples. The CL reaction mechanism was also discussed briefly. Singlet oxygen generated in the reaction between H2O2 and NBS was suggested to be participated in the CL reaction.  相似文献   

3.
4.
Isothermal depolymerization of the two polymers of C60, i.e. of 1D orthorhombic phase (O) and of “dimer state” (DS) have been studied by means of Infra-red spectroscopy in the temperature ranges 383-423 and 453-503 K, respectively. Differential Scanning Calorimetry (DSC) has been used to obtained depolymerization polytherms for O-phase and DS. Standard set of reaction models have been applied to describe depolymerization behavior of O-phase and DS. The choice of the reaction models was based primarily on the isotherms. Several models however demonstrated almost equal goodness of fit and were statistically indistinguishable. In this case we looked for simpler/more realistic mechanistic model of the reaction. For DS the first-order expression (Mampel equation) with the activation energy Ea = 134 ± 7 kJ mol−1 and preexponential factor ln(A/s−1) = 30.6 ± 2.1, fitted the isothermal data. This activation energy was nearly the same as the activation energy of the solid-state reaction of dimerization of C60 reported in the literature. This made the enthalpy of depolymerization close to zero in accord with the DSC data on depolymerization of DS. Mampel equation gave the best fit to the polythermal data with Ea = 153 kJ mol−1 and preexponential factor ln(A/s−1) = 35.8. For O-phase two reasonable reaction models, i.e. Mampel equation and “contracting spheres” model equally fitted to the isothermal data with Ea = 196 ± 2 and 194 ± 8 kJ mol−1, respectively and ln(A/s−1) = 39.1 ± 0.5 and 37.4 ± 0.2, respectively and to polythermal data with Ea = 163 and 170 kJ mol−1, respectively and ln(A/s−1) = 32.5 and 29.5, respectively.  相似文献   

5.
Indirect detection of paracetamol was accomplished using a capillary electrophoresis-chemiluminescence (CE-CL) detection system, which was based on its inhibitory effect on a luminol-potassium hexacyanoferrate(III) (K3[Fe(CN)6]) CL reaction. Paracetamol migrated in the separation capillary, where it mixed with luminol included in the running buffer. The separation capillary outlet was inserted into the reaction capillary to reach the detection window. A four-way plexiglass joint held the separation capillary and the reaction capillary in place. K3[Fe(CN)6] solution was siphoned into a tee and flowed down to the detection window. CL was observed at the tip of the separation capillary outlet. The CL reaction of K3[Fe(CN)6] oxidized luminol was employed to provide the high and constant background. Since paracetamol inhibits the CL reaction, an inverted paracetamol peak can be detected, and the degree of CL suppression is proportional to the paracetamol concentration. Maximum CL signal was observed with an electrophoretic buffer of 30 mM sodium borate (pH 9.4) containing 0.5 mM luminol and an oxidizer solution of 0.8 mM K3[Fe(CN)6] in 100 mM NaOH solution. Under the optimal conditions, a linear range from 6.6 × 10−10 to 6.6 × 10−8 M (r = 0.9999), and a detection limit of 5.6 × 10−10 M (signal-to-noise ratio = 3) for paracetamol were achieved. The relative standard deviation (R.S.D.) of the peak area for 5.0 × 10−9 M of paracetamol (n = 11) was 2.9%. The applicability of the method for the analysis of pharmaceutical and biological samples was examined.  相似文献   

6.
The kinetics of oxidative addition of CH3I to [Rh(FcCOCHCOCF3)(CO)(PPh3)], where Fc = ferrocenyl and (FcCOCHCOCF3) = fctfa = ferrocenoylacetonato, have been studied utilizing UV/Vis, IR, 1H and 31P NMR techniques. Three definite sets of reactions involving isomers of at least two distinctly different classes of RhIII-alkyl and two different classes of RhIII-acyl species were observed. Rate constants for this reaction in CHCl3 at 25 °C, applicable to the reaction sequence below, were determined as k1 = 0.00611(1) dm3 mol−1 s−1, k−1 = 0.0005(1) s−1, k3 = 0.00017(2) s−1 and k4 = 0.0000044(1) s−1 while k−3 ? k3 and k−4 ? k4 but both ≠0. The indeterminable equilibrium K2 was fast enough to be maintained during RhI depletion in the first set of reactions and during the RhIIIalkyl2 formation in the second set of reactions. From a 1H and 31P NMR study in CDCl3, Kc1 was found to be 0.68, Kc2 = 2.57, Kc3 = 1.00, Kc4 = 4.56 and Kc5 = 1.65.  相似文献   

7.
Tang B  Zhang L  Xu KH 《Talanta》2006,68(3):876-882
A new kind of near-infrared fluorescence agent, tricarbochlorocyanine dye (Cy.7.Cl), had been synthesized in house and used for near-infrared spectrofluorimetric determination of hydrogen peroxide (H2O2) by flow injection analysis (FIA) for the first time. The oxidation reaction of Cy.7.Cl with H2O2 occurred under the catalysis of horseradish peroxidase (HRP) and it was studied in detail. The possible reaction mechanism was discussed. Under optimal experimental conditions, fluorescence from Cy.7.Cl displayed excitation and emission maxima (ex/em) at 780 and 800 nm, respectively. The two linear working ranges were 1.86 × 10−7 to 4.11 × 10−7 mol L−1 and 4.11 × 10−7 to 7.19 × 10−6 mol L−1, respectively. The detection limit was 5.58 × 10−8 mol L−1 of H2O2. The effect of interferences was studied. The proposed method was successfully applied to the determination of hydrogen peroxide in rainwater, serum and plant samples.  相似文献   

8.
The reaction of bromomethyl-dibromo-indium(III), Br2InCH2Br with dialkylselenides, R1SeR2 (R1 = CH3, R2 = CH2C6H5; R1 = C2H5, R2 = CH2C6H5; R1 = R2 = CH2C6H5) afforded the corresponding dialkylselenonium methylide complexes of indium tribromide, Br3InCH2SeR1R2, which were fully characterized by NMR spectroscopy and single crystal X-ray diffraction studies.  相似文献   

9.
[18F]Xenon difluoride ([18F]XeF2), was produced by treating xenon difluoride with cyclotron-produced [18F]fluoride ion to provide a potentially useful agent for labeling novel radiotracers with fluorine-18 (t1/2 = 109.7 min) for imaging applications with positron emission tomography. Firstly, the effects of various reaction parameters, for example, vessel material, solvent, cation and base on this process were studied at room temperature. Glass vials facilitated the reaction more readily than polypropylene vials. The reaction was less efficient in acetonitrile than in dichloromethane. Cs+ or K+ with or without the cryptand, K 2.2.2, was acceptable as counter cation. The production of [18F]XeF2 was retarded by K2CO3, suggesting that generation of hydrogen fluoride in the reaction milieu promoted the incorporation of fluorine-18 into xenon difluoride. Secondly, the effect of temperature was studied using a microfluidic platform in which [18F]XeF2 was produced in acetonitrile at elevated temperature (≥85 °C) over 94 s. These results enabled us to develop a method for obtaining [18F]XeF2 on a production scale (up to 25 mCi) through reaction of [18F]fluoride ion with xenon difluoride in acetonitrile at 90 °C for 10 min. [18F]XeF2 was separated from the reaction mixture by distillation at 110 °C. Furthermore, [18F]XeF2 was shown to be reactive towards substrates, such as 1-((trimethylsilyl)oxy)cyclohexene and fluorene.  相似文献   

10.
Highly sensitive catalytic determination of molybdenum   总被引:1,自引:0,他引:1  
A novel, highly sensitive, selective, and simple kinetic method was developed for the determination of Mo(VI) based on its catalytic effect on the oxidation of 1-amino-2-naphthol-4-sulfonic acid (ANSA) with H2O2. The reaction was followed spectrophotometrically by tracing the oxidized product at 465 nm after 30 min of mixing the reagents. The optimum reaction conditions were: 10 mmol l−1 ANSA, 50 mmol l−1 H2O2, 100 mmol l−1 acetate buffer of pH 5.0 ± 0.05 and at 40 °C. Addition of 200 μg ml−1 diethylenetriaminepentaacetic acid (DTPA) conferred high selectivity for the proposed method. Following the recommended procedure, Mo(VI) could be determined with a linear calibration graph up to 2.5 ng ml−1 and a detection limit, based on the 3Sb-criterion, of 0.027 ng ml−1. The unique sensitivity and selectivity of the implemented method allowed its direct application to the determination of Mo(VI) in natural and industrial waste water. The method was validated by comparison with the standard ETAAS method. Moreover, published catalytic-spectrophotometric methods for the determination of molybdenum were reviewed.  相似文献   

11.
A highly sensitive catalytic quenching spectrofluorimetric method was described for the determination of V(V) based on its catalytic effect on the oxidation of 1,8-diaminonaphthalene by potassium bromate with Tiron as an activator in weakly acidic medium and the reaction mechanism was investigated. The reaction was followed spectrofluorimetrically by measuring the fluorescence intensity of 1,8-diaminonathphlene (DAN) (λex=356 nm, λem=439 nm) at a fixed time of 5 min from initiation of the reaction. Under the optimum conditions, vanadium(V) can be determined in the range 0.05-50.0 ng ml−1 with a S.D.=0.024 for 15 times measurements. The detection limit of the method was down to 0.0088 ng ml−1 and the catalytic reaction activation energy was found to be 43.92 kJ mol−1. The proposed method was tested for the determination of vanadium(V) in rice and natural water samples.  相似文献   

12.
A rapid and simple method using capillary electrophoresis (CE) with chemiluminescence (CL) detection was developed for the determination of levodopa. This method was based on enhance effect of levodopa on the CL reaction between luminol and potassium hexacyanoferrate(III) (K3[Fe(CN)6]) in alkaline aqueous solution. CL detection employed a lab-built reaction flow cell and a photon counter. The optimized conditions for the CL detection were 1.0 × 10−5 M luminol added to the CE running buffer and 5.0 × 10−5 M K3[Fe(CN)6] in 0.6 M NaOH solution introduced postcolumn. Under the optimal conditions, a linear range from 5.0 × 10−8 to 2.5 × 10−6 M (r = 9991), and a detection limit of 2.0 × 10−8 M (signal/noise = 3) for levodopa were achieved. The precision (R.S.D.) on peak area (at 5.0 × 10−7 M of levodopa, n = 11) was 4.1%. The applicability of the method for the analysis of pharmaceutical and human plasma samples was examined.  相似文献   

13.
The role played by K3Fe(CN)6 (0.08 or 1.5 g l− 1) in producing strong enhancement factors in the generation efficiency of plumbane in the reaction of NaBH4 (10 or 40 g l− 1) with Pb(II) (50 μg l− 1) in 0.1 M HCl solution, was investigated by using continuous flow chemical vapor generation coupled with atomic fluorescence spectrometry (CF-CVG-AFS). Different mixing sequences and reaction times of reagents were tested using different chemifold setups. Part of CF-CVG-AFS experiments were performed using the on-line, delayed addition of Pb(II) to a K3Fe(CN)6 + NaBH4 reaction mixture. Kinetic calculations estimating the concentration of K3Fe(CN)6 remaining in the K3Fe(CN)6 + NaBH4 reaction mixture before it merged with Pb(II) solution were also performed. Batch experiments measuring the amount of hydrogen evolved (pressure of H2 vs time) and pH variation during K3Fe(CN)6 + NaBH4 + HCl reaction were performed in order to have a correct estimation of the concentration of K3Fe(CN)6 remaining in the reaction system. The comparison of CF-CVG-AFS experiments with kinetic calculations indicates that strong enhancement factors of plumbane generation can be obtained without any interaction of K3Fe(CN)6 with Pb(II). The key role of K3Fe(CN)6 is recognized in its reaction with NaBH4 to give “special” borane complex intermediates, which are highly effective in the generation of plumbane from Pb(II).  相似文献   

14.
The labile complex W(CO)52-btmse) undergoes replacement of bis(trimethylsilyl)ethyne, btmse, by triphenylbismuthine in cyclohexane solution at an observable rate in the temperature range of 35-50 °C yielding almost solely W(CO)5(BiPh3) as the final product. The kinetics of this substitution reaction was studied in cyclohexane solution by quantitative FT-IR spectroscopy. The substitution reaction obeys a pseudo-first-order kinetics with respect to the concentration of the starting complex. The observed rate constant, kobs, was determined at four different temperatures and three different concentrations of the entering ligand BiPh3 in the range 16.8-65.4 mM. From the evaluation of kinetic data a possible reaction mechanism was proposed in which the rate determining step is the cleavage of metal-alkyne bond in the complex W(CO)52-btmse). A rate law was derived from the proposed mechanism. From the dependence of kobs on the entering ligand concentration, the rate constant k1 for the rate determining step was estimated at all temperatures. The activation enthalpy (106 ± 2 kJ mol−1) and the activation entropy (111 ± 6 J K−1 mol−1) were determined for this rate determining step from the evaluation of k1 values at different temperatures. The large positive value of the activation entropy is consistent with the dissociative nature of reaction. The large value of the activation enthalpy, close to the calculated tungsten-alkyne bond dissociation energy, also supports this dissociative rate-determining step of the substitution reaction.  相似文献   

15.
A new automated spectrophotometric method for the determination of total sulfite in white and red wines is reported. The assay is based on the reaction of o-phthalaldehyde (OPA) and ammonium chloride with the analyte in basic medium under SI conditions. Upon on-line alkalization with NaOH, a blue product is formed having an absorption maximum at 630 nm. The parameters affecting the reaction - temperature, pH, ionic strength, amount concentration and volume of OPA, amount concentration of ammonium chloride, flow rate and reaction coil length - and the gas-diffusion process - sample and HCl volumes, length of mixing coil, donor flow rate - were studied. The proposed method was validated in terms of linearity (1-40 mg L−1, r = 0.9997), limit of detection (cL = 0.3 mg L−1) and quantitation (cQ = 1.0 mg L−1), precision (sr = 2.2% at 20 mg L−1 sulfite, n = 12) and selectivity. The applicability of the analytical procedure was evaluated by analyzing white and red wine samples, while the accuracy as expressed by recovery experiments ranged between 96% and 106%.  相似文献   

16.
This paper describes a highly sensitive, selective catalytic-kinetic-spectrophotometric method for the determination of copper(II) concentration as low as 6 ng ml−1. The method is based on the catalytic effect of copper(II) on the oxidation of citric acid by alkaline hexacyanoferrate(III). The reaction was followed by measuring the decrease in absorbance of hexacyanoferrate(III) at 420 nm (λmax of [Fe(CN)6]3−,  = 1020 dm3 mol−1 cm−1). The dependence of rate of the indicator reaction on the reaction variables has been studied and discussed to propose a suitable mechanism to get a relation between the reaction rate and [Cu2+]. A fixed time procedure has been used to obtain a linear calibration curve between the initial rate and lower [Cu2+] or log[Cu2+] in the range 1 × 10−7 to 4 × 10−4 mol l−1 (6.35-25,400 ng ml−1). The detection limit has been calculated to be 4 ng ml−1. The maximum average error is 3.5%. The effect of the presence of various cations, commonly associated with copper(II) and some anions has also been investigated and discussed. The proposed method is sensitive, accurate, rapid and inexpensive compared to other techniques available for determination of copper(II) in such a large range of concentration. The new method has been successfully applied for the determination of copper(II) in various samples.  相似文献   

17.
8-Quinolinol (HQ) reacts with [Pd(α-/β-NaiR)Cl2] [α-/β-NaiR = 1-alkyl-2-(naphthyl-α-/β-azo)imidazole] in acetonitrile (MeCN) solution to give [Pd(α-/β-NaiR)(Q)](ClO4). The products are characterized by spectroscopic techniques (FT-IR, UV–Vis, NMR). The reaction kinetics show a first order dependence of rate on each of the concentration of the metal complex and HQ. Addition of LiCl to the reaction retarded the rate of reaction and has proved the cleavage of the Pd–Cl bond as the rate-determining step. Thermodynamic parameters (ΔH° and ΔS°) are determined from variable temperature kinetic studies. The magnitude of the second order rate constant, k2, increases as in the order: Pd(NaiEt)Cl2 < Pd(NaiMe)Cl2 < Pd(NaiBz)Cl2 as well as Pd(β-NaiR)Cl2 < Pd(α-NaiR)Cl2.  相似文献   

18.
Treatment of SbX3 (X = Br, Cl) with DippnacnacLi (Dippnacnac = [{N(C6H3iPr22,6)C(Me)}2CH]) or Mesnacnac (Mesnacnac = [{N(Mes)C(Me)}2CH], Mes = 2,4,6, trimethyl benzene) affords different products that are dependent on the stoichiometry of the reaction and the halide precursor. When DippnacnacLi is reacted with SbBr3, C-H activation of the ligand backbone is observed and an asymmetric, bridged bromide dimer is isolated. In comparison, the reaction of SbCl3 with MesnacnacLi affords monomeric MesnacnacSbCl2. The solid-state structures were determined using X-ray crystallography.  相似文献   

19.
The photochemical reaction of W(CO)6 with diethylsilane has been used to generate new tungsten-silicon compounds varying in stability. The initially formed η2-silane intermediate complex [W(CO)52-H-SiHEt2)], characterized by two equal-intensity doublets with 2JH-H = 10 Hz at δ = 5.10 (1JSi-H = 217 Hz) and δ = −8.05 (1JW-H = 38 Hz, 1JSi-H = 93 Hz), was detected by the 1H NMR spectroscopy (methylcyclohexane-d14, −10 °C). The η2-silane complex was converted in the dark to give more stable species. One of them was characterized by two equal-intensity proton signals observed as doublets with 2JH-H = 5.2 Hz at δ = −8.25 and −10.39 ppm. The singlet proton resonance at δ = −9.31 flanked by 29Si and 183W satellites (1JSi-H = 43 Hz, 2JSi-H = 34 Hz, 1JW-H = 40 Hz) was assigned to the agostic proton of the W(η2-H-SiEt2) group in the most stable compound isolated from the photochemical reaction products in crystalline form. The molecular structure of the bis{(μ-η2-hydridodiethylsilyl)tetracarbonyltungsten(I)} complex [{W(μ-η2-H-SiEt2)(CO)4}2] was established by single-crystal X-ray diffraction studies. The tungsten hydride observed in the 1H NMR spectrum at δ = −9.31 was located in the structure at a chemically reasonable position between the W and Si atoms of the W-Si bond of the bridging silyl ligand. The reactivity of photochemically generated W-Si compounds towards norbornene, cyclopentene, diphenylacetylene, acetone, and water was studied. As was observed by IR and NMR spectroscopy, the η2-silane ligand in the complex [W(CO)52-H-SiHEt2)] is very easily replaced by an η2-olefin or η2-alkyne ligand.  相似文献   

20.
Fotini S. Kika 《Talanta》2007,71(3):1405-1410
The present work reports the first sequential injection (SI) method for the spectrophotometric determination of Ti(IV). The method is based upon the reaction of Ti(IV) with chromotropic acid (CA) in acidic medium to form a water-soluble complex (λmax = 420 nm). The chemical and instrumental variables of the system that affected the reaction were studied. Selectivity was greatly enhanced using ascorbic acid. A linear calibration graph was obtained in the range 0.2-10.0 mg l−1 Ti(IV) at a sampling frequency of 24 h−1. The precision was satisfactory (sr = 1.5% at 5.0 mg l−1 Ti(IV), n = 12) and the 3σ limit of detection, cL, was 0.7 mg l−1 (n = 10). The developed method proved to be adequately selective and was applied successfully to the analysis of real samples (dental implant and natural Moroccan phosphate rock) giving accurate results based on recovery studies (98-105%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号