首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Microfluidic LC systems present undeniable advantages over classical LC in terms of sensitivity. Hepcidin, a peptide marker of clinical disorders linked to iron metabolism, was used as model to demonstrate peptide quantification potentialities of LC-chip coupled to a nanoelectrospray source ion trap mass spectrometer in an aqueous sample. First, stable isotope labelled hepcidin was chosen as internal standard and gradient as well as sample compositions were optimised using design of experiments as development tool. The method was then prevalidated using accuracy profiles in order to select the most appropriate response function and to confirm the ability of the technique to quantify low hepcidin concentration. A reliable and very sensitive quantitation method was finally obtained using this integrated microfluidic technology. Indeed, good results with respect to accuracy, trueness and precision were achieved, as well as a very low limit of quantitation (0.07 ng/ml). Method suitability of nano-LC on chip tandem mass spectrometry for hepcidin quantitation was also demonstrated in complex media such as human plasma.  相似文献   

2.
Nowadays, organic chemists are interested in the field of heterocyclic chemistry due to its use in the synthesis of a great variety of biologically active compounds. Heterocyclic compounds are widely found in nature and are essential for life. Among these, some natural nitrogen containing heterocyclic compounds have been used as chemotherapeutic agents. Their attachment to sugar molecules either as thioglycosides or as nucleosides analogues plays an important role in vital biological processes as well as in synthetic organic chemistry. Molecules containing benzothiazole (BT) nuclei are of this interesting class of compounds because some of them have been found to have a wide variety of biological activities. In this sense, we selected this topic to review and to then summarize the procedures related to the condensation reactions of o-aminothiophenoles (ATPs) as well as their disulfides with carboxylic acids, esters, orthoesters, acyl chlorides, amides, and nitriles. The condensation reactions with carbon dioxide (CO2) are included. Conventional methods with the use of acid and metal catalysts as well as recent green techniques, such as microwave irradiation, the use of ionic liquids, and ultrasound (US) chemistry, which have proven to have many advantages, were found in the review.  相似文献   

3.
Asymmetric multicomponent reactions involve the preparation of chiral compounds by the reaction of three or more reagents added simultaneously. This kind of addition and reaction has some advantages over classic divergent reaction strategies, such as lower costs, time, and energy, as well as environmentally friendlier aspects. All these advantages, together with the high level of stereoselectivity attained in some of these reactions, will force chemists in industry as in academia to adopt this new strategy of synthesis, or at least to consider it as a viable option. The positive aspects as well as the drawbacks of this strategy are discussed in this Review.  相似文献   

4.
5.
《Analytical letters》2012,45(4):571-577
ABSTRACT

Analytical Chemistry as a science has its own history as well as an important present and a sure future.

The aim of this paper is to demonstrate the role of Analytical Chemistry as a science and of Chemical Analysis as an art in the development of human society.

The correlation between method and instrument hyphenated by the sample is discussed along a long period of active Analytical Chemistry.

The connection between theory of Analytical Chemistry and the practice of chemical analysis enables us to be sure of the future of Analytical Chemistry.

We must consider that to do science it is necessary to know the history of science as well as to make research to be used not only in the present, but also in the near future.

Surely, Analytical Chemistry as a real scientific area will be on the top of sciences in the next century.  相似文献   

6.
Erin A. Henslee 《Electrophoresis》2020,41(21-22):1915-1930
Many cellular functions are affected by and thus can be characterized by a cell's electrophysiology. This has also been found to correspond to other biophysical parameters such as cell morphology and mechanical properties. Dielectrophoresis (DEP) is an electrostatic technique which can be used to examine cellular biophysical parameters through the measuring of single or multiple cell response to electric field induced forces. This label-free method offers many advantages in characterizing a cell population over conventional electrophysiology methods such as patch clamping; however, it has yet to see mainstream pharmacological application. Challenges such as the transdisciplinary nature of the field bridging engineering and the biological sciences, throughput, specificity as well as standardization are being addressed in current literature. This review focuses on the developments of DEP-based cell electrophysiological characterization where determining cellular properties such as membrane conductance and capacitance, and cytoplasmic conductivity are the primary motivation. A brief theoretical review, techniques for obtaining these cell parameters, as well as the resulting cell parameters and their applications are included in this review. This review aims to further support the development of DEP-based cell characterization as an important part of the future of DEP and electrophysiology research.  相似文献   

7.
A review of the chemical education research literature suggests that the term constructivism is used in two ways: experience-based constructivism and discipline-based constructivism. These two perspectives are examined as an epistemology in relation to the teaching and learning of the concept of idealization in chemistry. It is claimed that experience-based constructivism is powerless to inform the origin of such concepts in chemistry and while discipline-based constructivism can admit such theoretical concepts as idealization it does not offer any unique perspectives that cannot be obtained from other models. Chemical education researchers do not consistently appeal to constructivism as an epistemology or as a teaching/learning perspective and it is shown that, while it draws attention to worthwhile teaching/learning strategies, it cannot be considered as foundational to chemical education research and tends to be used more as an educational label than as an undergirding theory.  相似文献   

8.
The Markovnikov rule, known to every student of organic chemistry, was formulated 150 years ago, in 1869. During its long history (almost as long as the history of organic chemistry itself), attitudes towards this famous statement of chemical reactivity have evolved from indifference up to the 1930s, through common acceptance as a useful educational paradigm with marginal use in research up to the 1990s, to its vigorous relaunch as an important designation of regioselectivity in the last few decades. The unexpected new popularity of the classical rule is accounted for by the rapid expansion in catalytic addition reactions and their critical importance as highly effective atom‐economical, regioselective methods in modern organic synthesis. A historical outline of the life and achievements of Vladimir Markovnikov is included to reveal the very wide scope of his interests as well as his prophetic predictions on structure, reactivity, selectivity, stereochemistry, and other key issues of organic chemistry.  相似文献   

9.
TPE-TCF, a simple TPE-derivative with red-emission was used to detect cyanide in the condition of single dispersion as well as under aggregate state. It could be found that TPE-TCF exhibited excellent fluorescent response to cyanide in both situations, and the mechanism was supposed to be the reaction between cyanide and the double bond in TPE-TCF as well as the aggregation induced emission property of the reacted TPE-TCF molecules. What's more, TPE-TCF could distinguish cyanide with other species, such as common anions and biotiol well, which indicated it as a potential indicator for cyanide with good selectivity and specificity.  相似文献   

10.
Volatile organic compounds serve in nature as semiochemicals for communication between species, and are often used as flavors and fragrances in our everyday life. The quite limited longevity of olfactive perception has led to the development of pro-perfumes or pro-fragrances--ideally nonvolatile and odorless fragrance precursors which release the active volatiles by bond cleavage. Only a limited amount of reaction conditions, such as hydrolysis, temperature changes, as well as the action of light, oxygen, enzymes, or microorganisms, can be used to liberate the many different chemical functionalities. This Review describes the controlled chemical release of fragrances and discusses additional challenges such as precursor stability during product storage as well as some aspects concerning toxicity and biodegradability. As the same systems can be applied in different areas of research, the scope of this Review covers fragrance delivery as well as the controlled release of volatiles in general.  相似文献   

11.
Liquid crystalline materials display unique properties which can be exploited in organic light-emitting diodes. Characteristic features of liquid crystals are the anisotropy of electronic properties, a strong coupling to external fields as well as a tendency to form spontaneously homogeneous monodomain films. It is found that liquid crystalline materials can be used in light-emitting diodes to control the state of polarization of the emitted light, the magnitude of the onset field for emission as well as the quantum efficiency. Both low molar mass and polymeric liquid crystals have been introduced with great success in single as well as in multilayer devices. © 1998 John Wiley & Sons, Ltd.  相似文献   

12.
J-aggregates are of significant interest for organic materials conceived by supramolecular approaches. Their discovery in the 1930s represents one of the most important milestones in dye chemistry as well as the germination of supramolecular chemistry. The intriguing optical properties of J-aggregates (in particular, very narrow red-shifted absorption bands with respect to those of the monomer and their ability to delocalize and migrate excitons) as well as their prospect for applications have motivated scientists to become involved in this field, and numerous contributions have been published. This Review provides an overview on the J-aggregates of a broad variety of dyes (including cyanines, porphyrins, phthalocyanines, and perylene bisimides) created by using supramolecular construction principles, and discusses their optical and photophysical properties as well as their potential applications. Thus, this Review is intended to be of interest to the supramolecular, photochemistry, and materials science communities.  相似文献   

13.
It is known that in the three-dimensional structure of a protein, certain amino acids can interact with each other in order to provide structural integrity or aid in its catalytic function. If these positions are mutated the loss of this interaction usually leads to a non-functional protein. Directed evolution experiments, which probe the sequence space of a protein through mutations in search for an improved variant, frequently result in such inactive sequences. In this work, we address the use of machine learning algorithms, Boolean learning and support vector machines (SVMs), to find such pairs of amino acid positions. The recombination method of imparting mutations was simulated to create in silico sequences that were used as training data for the algorithms. The two algorithms were combined together to develop an approach that weighs the structural risk as well as the empirical risk to solve the problem. This strategy was adapted to a multi-round framework of experiments where the data generated in the present round is used to design experiments for the next round to improve the generated library, as well as the estimation of the interacting positions. It is observed that this strategy can greatly improve the number of functional variants that are generated as well as the average number of mutations that can be made in the library.  相似文献   

14.
15.
In-tube solid-phase microextraction (in-tube SPME or IT-SPME) is a sample preparation technique which has demonstrated over time its ability to couple with liquid chromatography (LC), as well as its advantages as a miniaturized technique. However, the in-tube SPME perspectives in the forthcoming years depend on solutions that can be brought to the environmental, industrial, food and biomedical analysis. The purpose of this scoping review is to examine the strengths and weaknesses of this technique during the period 2009 to 2015 in order to identify research gaps that should be addressed in the future, as well as the tendencies that are meant to strengthen the technique.  相似文献   

16.
Cosmetic industries have expanded globally and will continue to increase as there are consumers. Nowadays, the interest starts to incline towards cosmetics formulated using plant-based ingredients. Marine plants such as seaweed possess numerous natural polysaccharides. Carrageenan is one of the compounds that can be extracted from red seaweed (Rhodophyta). This natural polysaccharide is widely known to act as a thickener, stabilizer, and water-binding agent as well as have diverse biological activities that make it a suitable active ingredient in cosmetic products. The review paper is organized by starting with discussing the significant aspects related to carrageenan which are the source, structure, as well as general and biological properties of carrageenan that make it appropriate to be applied in cosmetics. This paper also highlighted the applications of carrageenan in cosmetics, followed by the extraction method and instrument used.  相似文献   

17.
The toxic bicyclic octapeptide α‐amanitin is mostly found in different species of the mushroom genus Amanita, with the death cap (Amanita phalloides) as one of the most prominent members. Due to its high selective inhibition of RNA polymerase II, which is directly linked to its high toxicity, particularly to hepatocytes, α‐amanitin received an increased attention as a toxin‐component of antibody‐drug conjugates (ADC) in cancer research. Furthermore, the isolation of α‐amanitin from mushrooms as the sole source severely restricts compound supply as well as further investigations, as structure–activity relationship (SAR) studies. Based on a straightforward access to the non‐proteinogenic amino acid dihydroxyisoleucine, we herein present a robust total synthesis of α‐amanitin providing options for production at larger scale as well as future structural diversifications.  相似文献   

18.
Interactions and uses of antisense peptides in affinity technology.   总被引:3,自引:0,他引:3  
Antisense peptides, amino acid sequences encoded in the antisense strand of DNA, can interact with significant affinity and selectivity with their corresponding sensepeptides. Experimentally, sense-antisense peptide recognition has been observed repeatedly. However, skepticism about the biological relevance of this phenomenon has persisted. This is due in part to the unexpected and somewhat couterintutive nature of the interaction as well as to its non-universality as an empirical observation. Nonetheless, antisense peptides in several cases investigated so far have been used as immobilized ligands for the successful affinity chromatographic separation of native (sense) peptides and proteins. For example, immobilized antisense peptides corresponding to Arg8-vasopressin (AVP) have been used to separate vasopressin from oxytocin chromatographically as well as to affinity capture AVP-receptor complex. These results, together with improved understanding of the general features of amino acid sequence which drive antisense-sense peptide interactions as well as new ideas for making antisense peptides chimeras, are beginning to suggest improved ways to make antisense-related peptides as affinity agents for separation as well as for other biotechnology applications.  相似文献   

19.
Although organic photovoltaic devices (OPVs) have been investigated for more than two decades, the power conversion efficiencies of OPVs are much lower than those of inorganic or perovskite solar cells. One effective approach to improve the efficiency of OPVs is to introduce additives to enhance light harvesting as well as charge transportation in the devices. Here, black phosphorus quantum dots (BPQDs) are introduced in OPVs as an additive. By adding 0.055 wt % BPQDs relative to the polymer donors in the OPVs, the device efficiencies can be dramatically improved for more than 10 %. The weight percentage is much lower than that of any other additive used in OPVs before, which is mainly due to the two‐dimentional structure as well as the strong broadband light absorption and scattering of the BPQDs. This work paves a way for using two‐dimentional quantum dots in OPVs as a cost‐effective approach to enhance device efficiencies.  相似文献   

20.
Enzyme-based biocatalysis is emerging as an advanced technique to develop green processes that help to maintain the sustainability of the environment. The bioremediation of toxic organic pollutants and waste to bioenergy production using enzymes as biocatalysts is rapidly growing due to its eco-friendly and sustainable nature. Additionally, a range of microbial species that typically grow on organic wastes can be used to produce these enzymes in an efficient manner. This is seen as a potential strategy for the development of cost-effective manufacturing for a number of biotechnological applications. The present study discusses biocatalysis as a promising and sustainable method toward the bioremediation of hazardous organic pollutants as well as for bioenergy production, based on the immense potential of enzymes as biocatalysts. Emphasis has been placed on evaluating the critical elements that can enhance the production of enzymes used as biocatalysts, as well as their functional effectiveness and stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号