首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Growth initiation and film nucleation in atomic layer deposition (ALD) is important for controlling interface composition and achieving atomic-scale films with well-defined composition. Ruthenium ALD is studied here using ruthenocene and oxygen as reactants, and growth initiation and nucleation are characterized on several different growth surfaces, including SiO2, HfO2, and hydrogen terminated silicon, using on-line Auger electron spectroscopy and ex-situ X-ray photoelectron spectroscopy. The time needed to reach the full growth rate (typically approximately 1 A per deposition cycle) is found to increase as the surface energy of the starting surface (determined from contact angle measurements) decreased. Growth starts more readily on HfO2 than on SiO2 or Si-H surfaces, and Auger analysis indicates distinct differences in surface reactions on the various surfaces during film nucleation. Specifically, surface oxygen is consumed during ruthenocene exposure, so the nucleation rate will depend on the availability of oxygen and the energetics of surface oxygen bonding on the starting substrate surface.  相似文献   

2.
We study the oxidation mechanism of silicon in the presence of a thin HfO2 layer. We performed a set of annealing in 18O2 atmosphere on HfO2/SiO2/Si stacks observing the 18O distribution in the SiO2 layer with time-of-flight secondary ion mass spectrometry (ToF-SIMS). The 18O distribution in HfO2/SiO2/Si stacks upon 18O2 annealing suggests that what is responsible for SiO2 growth is the molecular O2, whereas no contribution is found of the atomic oxygen to the oxidation. By studying the dependence of the oxidation velocity from oxygen partial pressure and annealing temperature, we demonstrate that the rate-determining step of the oxidation is the oxygen exchange at the HfO2/SiO2 interface. When moisture is chemisorbed in HfO2 films, the oxidation of the underlying silicon substrate becomes extremely fast and its kinetics can be described as a wet silicon oxidation process. The silicon oxidation during O2 annealing of the atomic layer deposited HfO2/Si is fast in its early stage due to chemisorbed moisture and becomes slow after the first 10 s.  相似文献   

3.
Germanium nanowires (GeNWs) with p- and n-dopants were synthesized by chemical vapor deposition (CVD) and were used to construct complementary field-effect transistors (FETs). Electrical transport and X-ray photoelectron spectroscopy (XPS) data are correlated to glean the effects of Ge surface chemistry to the electrical characteristics of GeNWs. Large hysteresis due to water molecules strongly bound to GeO(2) on GeNWs is revealed. Different oxidation behavior and hysteresis characteristics and opposite band bending due to Fermi level pinning by interface states between Ge and surface oxides are observed for p- and n-type GeNWs. Vacuum annealing above 400 degrees C is used to remove surface oxides and eliminate hysteresis in GeNW FETs. High-kappa dielectric HfO(2) films grown on clean GeNW surfaces by atomic layer deposition (ALD) using an alkylamide precursor is effective in serving as the first layer of surface passivation. Lastly, the depletion length along the radial direction of nanowires is evaluated. The result suggests that surface effects could be dominant over the "bulk" properties of small diameter wires.  相似文献   

4.
In future microelectronic devices, SiO2 as a gate dielectric material will be replaced by materials with a higher dielectric constant. One such candidate material is HfO2. Thin layers are typically deposited from ligand-containing precursors in chemical vapor deposition (CVD) processes. In the atomic layer deposition (ALD) of HfO2, these precursors are often HfCl4 and H2O. Obviously, the material properties of the deposited films will be affected by residual ligands from the precursors. In this paper, we evaluate the use of grazing incidence--and total reflection-X-ray fluorescence spectrometry (GI-XRF and TXRF) for Cl trace analysis in nanometer-thin HfO2 films deposited using ALD. First, the results from different X-ray analysis approaches for the determination of Hf coverage are compared with the results from Rutherford backscattering spectrometry (RBS). Next, we discuss the selection of an appropriate X-ray excitation source for the analysis of traces within the high-kappa: layers. Finally, we combine both in a study on the accuracy of Cl determinations in HfO2 layers.  相似文献   

5.
6.
As atomic layer deposition (ALD) emerges as a method to fabricate architectures with atomic precision, emphasis is placed on understanding surface reactions and nucleation mechanisms. ALD of titanium dioxide with TiCl4 and water has been used to investigate deposition processes in general, but the effect of surface termination on the initial TiO2 nucleation lacks needed mechanistic insights. This work examines the adsorption of TiCl4 on Cl−, H−, and HO− terminated Si(100) and Si(111) surfaces to elucidate the general role of different surface structures and defect types in manipulating surface reactivity of growth and non-growth substrates. The surface sites and their role in the initial stages of deposition are examined by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Density functional theory (DFT) computations of the local functionalized silicon surfaces suggest oxygen-containing defects are primary drivers of selectivity loss on these surfaces.  相似文献   

7.
The use of single-walled carbon nanotube (SWNT) networks as templates for the electrodeposition of metal (Ag and Pt) nanostructures is described. Pristine SWNTs, grown on insulating SiO2 surfaces using catalyzed chemical vapor deposition, served as the working electrode. In the simplest case, electrical contact was made by depositing a gold strip on the SWNT substrate (device 1). Deposition of Ag and Pt over extensive periods (30 s) resulted in a high density of particles on the SWNTs, with almost contiguous nanowire formation from the Au/SWNT boundary moving to isolated nanoparticles at further distances from the contact. For direct electrochemical studies of Ag and Pt nucleation, the assembly was coated in a resist layer and a small window opened up to expose only the electrically connected SWNTs to solution (device 2). In this case, the electrochemical signature in voltammetric and amperometric studies of metal deposition was due solely to processes at the SWNTs. Coupled with high-resolution microscopy measurements (atomic force microscopy and field emission scanning electron microscopy), this approach provided detail on the nucleation and growth mechanisms of Ag and Pt on SWNTs under electrochemical control. In particular, Ag growth was found to be rapid and progressive with an increasing nanoparticle density with time, whereas Pt deposition was characterized by lower nucleation densities and slower growth rates with a tendency for larger particles to be produced over long times.  相似文献   

8.
The surface of polyurethane based catheter material or of silicon wafers as model surfaces were modified by spin coating of solutions of poly(ethylene oxide) or poly(vinyl alcohol) in water. For the incorporation of silver ions, silver nitrate was added to some of the solutions or the as-cast surfaces were dipped into AgNO3 solution. Furthermore, samples coated with a thin layer of metallic silver were prepared by deposition of silver vapor in vacuum. The as-prepared surfaces were studied by atomic force microscopy and X-ray photoelectron spectroscopy. During the spin coating of the solutions containing AgNO3, clusters of the silver component were formed. They were well dispersed in a poly(vinyl alcohol) matrix but act as nucleation agents in poly(ethylene oxide) where then large spherulites are formed. The surface compositions of coated samples and the depth profiling were carried out by angle dependent X-ray photoelectron spectroscopy.  相似文献   

9.
Polysilicon Microelectromechanical systems (MEMS) are the subject of intensive researches. Surface chemistry and topography of a MEMS test structure fabricated at Sandia National Laboratory, USA, were studied by means of scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and atom-ic force microscopy(AFM). XPS C1, and Si2p spectra from the polysilicon components, silicon nitride sub-strate and a reference silicon wafer were compared. The results confirm the presence of a self-assembled monolayer (SAM) on the MEMS surface. An island-like morphology was found on both polysilicon and sili-con nitride surfaces of the MEMS. The islands take the form of caps, being up to 0. 5 μm in diameter and 20 nm in height. It is concluded that the co-existence of columnar growth and equiaxed growth during the low pressure chemical vapor deposition(LPCVD) of these layers leads to the observed morphology and the is-lands are caps to the columnar structures.  相似文献   

10.
A new method to prepare plasmonically active noble metal nanostructures on large surface area silicon nanowires (SiNWs) mediated by atomic layer deposition (ALD) technology has successfully been demonstrated for applications of surface‐enhanced Raman spectroscopy (SERS)‐based sensing. As host material for the plasmonically active nanostructures we use dense single‐crystalline SiNWs with diameters of less than 100 nm as obtained by a wet chemical etching method based on silver nitrate and hydrofluoric acid solutions. The SERS active metal nanoparticles/islands are made from silver (Ag) shells as deposited by autometallography on the core nanoislands made from platinum (Pt) that can easily be deposited by ALD in the form of nanoislands covering the SiNW surfaces in a controlled way. The density of the plasmonically inactive Pt islands as well as the thickness of noble metal Ag shell are two key factors determining the magnitude of the SERS signal enhancement and sensitivity of detection. The optimized Ag coated Pt islands on SiNWs exhibit great potential for ultrasensitive molecular sensing in terms of high SERS signal enhancement ability, good stability and reproducibility. The plasmonic activity of the core‐shell Pt//Ag system that will be experimentally realized in this paper as an example was demonstrated in numerical finite element simulations as well as experimentally in Raman measurements of SERS activity of a highly diluted model dye molecule. The morphology and structure of the core‐shell Pt//Ag nanoparticles on SiNW surfaces were investigated by scanning‐ and transmission electron microscopy. Optimized core–shell nanoparticle geometries for maximum Raman signal enhancement is discussed essentially based on the finite element modeling.  相似文献   

11.
Hydrophobic self-assembled octadecyltrichlorosilane (ODTS), ultrathin films of polypropylene, and ODTS modified with cationic dioctadecyldimethylammonium bromide are employed as substrates for deposition of multilayers of poly(allylamine hydrochloride) and poly(acrylic acid) from aqueous solution. The assembly of highly dissipative polyelectrolyte multilayers (PEMs) is demonstrated by quartz crystal microgravimetry. The initial rate of adsorption is faster and the adsorbed amount larger on the cationic surface, while the detailed structure of the PEMs, as determined by atomic force microscopy imaging, is related primarily to the molecular weight of the adsorbing polymers. A more extensive PEM adsorption on the hydrophobic surfaces takes place with increasing ionic strength of the background electrolyte solution. The water contact angle depends on the type of polymer adsorbed as the outermost layer, indicating that, despite the expected interdiffusion for the different polymer chains, there is a net macromolecular segregation to the free surface. Surface modification with the high molecular weight PEMs produces a more marked reduction of the hydrophilicity of the substrate.  相似文献   

12.
Alkylsiloxane self-assembled monolayers (SAMs) are used in the semiconductor industry and, more recently, as proxies for organics adsorbed on airborne mineral dust and on buildings and construction materials. A number of methods have been used for removing the SAM from the substrate after reaction or use, particularly plasmas or piranha (H2SO4/H2O2) solution. However, when the substrates are reused to make new SAMs, the impact of the cleaning methods on the chemistry of subsequently formed SAMs on the surface is not known. Here we report atomic force microscopy, X-ray photoelectron spectroscopy, Auger electron spectroscopy, and Fourier transform infrared studies of changes in a silicon substrate upon repetitive deposition and removal of SAMs by these two methods. It is shown that a thicker layer of silicon oxide is formed, and the surface becomes irregular and roughened, particularly after the piranha treatment. This layer of silica impacts the structure of the SAMs attached to it and can serve as a reservoir for trace gases that adsorb on it, potentially contributing to the subsequent reactions of the SAM. The implications for the use of such surfaces as a proxy for reactions of organics on airborne dust particles and on structures in the boundary layer are discussed.  相似文献   

13.
The electronic and chemical (adsorption) properties of bimetallic Ag/Pt(111) surfaces and their modification upon surface alloy formation, that is, during intermixing of Ag and Pt atoms in the top atomic layer upon annealing, were studied by X‐ray photoelectron spectroscopy (XPS) and, using CO as probe molecule, by temperature‐programmed desorption (TPD) and infrared reflection absorption spectroscopy (IRRAS), respectively. The surface alloys are prepared by deposition of sub‐monolayer Ag amounts on a Pt(111) surface at room temperature, leading to extended Ag monolayer islands on the substrate, and subsequent annealing of these surfaces. Surface alloy formation starts at ≈600–650 K, which is evidenced by core‐level shifts (CLSs) of the Ag(3d5/2) signal. A distinct change of the CO adsorption properties is observed when going to the intermixed PtAg surface alloys. Most prominently, we find the growth of a new desorption feature at higher temperature (≈550 K) in the TPD spectra upon surface alloy formation. This goes along with a shift of the COad‐related IR bands to lower wave number. Surface alloy formation is almost completed after heating to 700 K.  相似文献   

14.
《Electroanalysis》2018,30(9):2028-2034
The preparation of nanoporous metal structures has received a substantial amount of attention because of the unique properties and various applications of these structures. In this work, the preparation of nanoporous Pt structures by modification of nanoporous gold (NPG) surfaces with Pt was achieved. An atomic layer electrodeposition (ALED) technique previously reported for the modification of flat Au surfaces with Pt was applied to the NPG surfaces to produce Pt‐modified NPG structures. The optimal ALED parameters, such as deposition potential, time, and number of cycles, for the preparation of Pt‐modified NPG structures were investigated. Scanning electron microscopy and energy‐dispersive X‐ray analysis confirmed the successful preparation of nanoporous Pt structures by ALED techniques. The Pt‐modified NPG performed well as a pH sensor with a Nernstian slope and negligible hysteresis. The method of preparing the nanoporous Pt structures reported in this work could be utilized in various applications such as electrocatalysis and electroanalysis.  相似文献   

15.
The tin oxide and silicon oxide films have been deposited on polycarbonate substrates as gas barrier films, using a thermal evaporation and ion beam assisted deposition process. The oxide films deposited by ion beam assisted deposition show a much lower water vapor transmission rate than those by thermal evaporation. The tin oxide films show a similar water vapor transmission rate to the silicon oxide films in thermal evaporation but a lower water vapor transmission rate in IBAD. These results are related to the fact that the permeation of water vapor with a large dipole moment is affected by the chemistry of oxides and the packing density of the oxide films. The permeation mechanism of water vapor through the oxide films is discussed in terms of the chemical interaction with water vapor and the microstructure of the oxide films. The chemical interaction of water vapor with oxide films has been investigated by the refractive index from ellipsometry and the OH group peak from X-ray photoelectron spectroscopy, and the microstructure of the composite oxide films was characterized using atomic force microscopy and a transmission electron microscope. The activation energy for water vapor permeation through the oxide films has also been measured in relation to the permeation mechanism of water vapor. The diffusivity of water vapor for the tin oxide films has been calculated from the time lag plot, and its implications are discussed.  相似文献   

16.
Reproducibly smooth amino-functionalized surfaces were obtained by deposition of aminopropyltrimethoxysilane (APTMS) at the vapor/solid interface. Characteristics of these amino-functionalized surfaces were evaluated based on atomic force microscopy, water contact angle measurement and X-ray photoelectron spectroscopy. The results showed that APTMS modified surfaces are very homogeneous and the chemical reactivity of modified surfaces can be ensured with high free amino content. Furthermore, for the purpose of tailoring the wettability of silicon surface, dual self-assembled films were achieved by performing reaction between amino-functionalized surface and n-alkanoic acids with different chain length. The wettability of the self-assembled films can be adjusted with altering the hydrocarbon chain length of alkanoic acids. Moreover, cooperation of dual self-assembled films with surface roughening, superhydrophobic surfaces with CA larger than 153 degrees were obtained. Thus, the wettability of modified surfaces can be altered greatly with changing hydrocarbon chain length of self-assembled films.  相似文献   

17.
采用离子束溅射技术(IBS)在碳纤维布基底上制备PtRu/C合金薄膜作为燃料电池电极催化材料. 应用XPS、XRD、GIXD、AFM等分析手段研究了PtRu薄膜表面的成分、化学状态、表面形貌以及PtRu薄膜的表层、次表层和体相的结构. 结果表明, 在双束离子沉积过程中, 由于溅射产生的Pt+和Ru+之间的相互作用, 使薄膜表面的化学状态和薄膜表层(15-40 nm范围内)结构发生了变化, 并影响PtRu薄膜的催化性能. 当xPt/xRu=0.64时, PtRu薄膜出现Ru固溶体在表层富集, 并在表层诱发形成Pt39Ru61非晶相.  相似文献   

18.
使用密度泛函方法研究了以二乙基锌(DEZn)和H2S作为前驱体在硅表面原子层沉积ZnS的初始反应机理.ZnS薄膜的原子层沉积包括2个连续的"半反应":即DEZn与H2S"半反应".研究显示:DEZn与H2S"半反应"都经历了一个C2H6消去过程.通过对比在单硫氢基及双硫氢基硅表面上的反应,发现邻位硫氢基的存在有利于前驱体分子的吸附并能够降低反应活化能,这意味着双硫氢基硅表面上的反应是能量上更有利的反应.另外,也发现DEZn"半反应"比H2S"半反应"更容易进行.  相似文献   

19.
One application of octadecyltrichlorosilane (OTS) self‐assembled monolayers (SAMs) is its use as thin film resists. In this work, we demonstrated that OTS SAMs can be reliable resists for organo‐metallic chemical vapor deposition (OMCVD) grown gold nanoparticles (Au NPs). In optical sensing applications based on Au NPs, one candidate system consists of patterned OTS SAMs and precisely grown OMCVD Au NPs for achieving a high sensitivity. As an initial step, the OTS SAMs need to perfectly resist the OMCVD Au NP growth. Hence the optimized formation of the OTS SAMs affected by different assembly times and baking temperatures was studied by contact angle, ellipsometry, XPS, SEM, and atomic force microscopy (AFM). To demonstrate the ability of the OTS SAMs to resist OMCVD Au NP growth, the OMCVD process was carried out on two sets of samples: OTS SAMs fabricated under optimized conditions on one set and the other set without OTS SAMs. High‐resolution XPS, RBS, SEM, and ultraviolet‐visible (UV‐Vis) spectroscopy were applied to study the growth of Au NPs on the samples with and without OTS SAM resists. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
In this work we report on an investigation of hydrogen bonding and thermal stability on the surface of poly-crystalline diamond by high resolution electron energy loss spectroscopy (HR-EELS). Diamond films were grown on silicon substrates from CH(4)/H(2) as well as from CD(4)/D(2) gas mixtures by hot filament chemical vapor deposition (HF-CVD). The impact of ex situ ambient exposure on hydrogen bonding and its thermal stability was examined for: (i) as deposited films from a CH(4)/H(2) gas mixture; (ii) the same sample treated ex situ in micro-wave activated hydrogen plasma; and (iii) as deposited films from a CD(4)/D(2) gas mixture. In order to clarify the changes in the hydrogen bonding configuration detected on the different surfaces as a function of thermal annealing in situ hydrogenation by thermally activated atomic hydrogen was performed and examined. This study provides direct evidence that the exposure to ambient conditions and low temperature vacuum annealing have a pronounced effect on the hydrogen-carbon bonding configuration onto the poly-crystalline diamond surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号