首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ultrasound (US) cleaning technique was applied to remove fouling of ultrafiltration (UF) and microfiltration (MF) membranes which were used to treat peptone and milk aqueous solutions, respectively. Membrane operations were performed by cross-flow filtration with 60 kPa operating pressure in an US field. The US employed had 28, 45 and 100 kHz frequency with 23 W/cm(2) output power. For each polymeric membrane made of polysulfone UF and cellulose MF, cleaning experiments were carried out with and without US after fouling. The fouled UF and MF membranes showed volume flux decline, but the membrane property was recovered by US irradiation. It was found in 28 kHz frequency that water cleaning was effective for recovery of declined condition due to fouling. Also, US-enhanced permeability of membranes was discussed in both membrane systems. We observed that US decreased the fouling condition in both membrane systems when US was irradiated before fouling. It was found that 28 kHz frequency US could enhance formation of the fouled layer in both filtration systems of peptone and milk solution.  相似文献   

2.
Ultrafiltration (UF) of whey is a major membrane based process in the dairy industry. However, commercialization of this application has been limited by membrane fouling, which has a detrimental influence on the permeation rate. There are a number of different chemical and physical cleaning methods currently used for cleaning a fouled membrane. It has been suggested that the cleaning frequency and the severity of such cleaning procedures control the membrane lifetime. The development of an optimal cleaning strategy should therefore have a direct implication on the process economics. Recently, the use of ultrasound has attracted considerable interest as an alternative approach to the conventional methods. In the present study, we have studied the ultrasonic cleaning of polysulfone ultrafiltration membranes fouled with dairy whey solutions. The effects of a number of cleaning process parameters have been examined in the presence of ultrasound and results compared with the conventional operation. Experiments were conducted using a small single sheet membrane unit that was immersed totally within an ultrasonic bath. Results show that ultrasonic cleaning improves the cleaning efficiency under all experimental conditions. The ultrasonic effect is more significant in the absence of surfactant, but is less influenced by temperature and transmembrane pressure. Our results suggest that the ultrasonic energy acts primarily by increasing the turbulence within the cleaning solution.  相似文献   

3.
A kind of protein-resistant ceramic membrane is prepared by grafting poly(oligo (ethylene glycol) methyl ether methacrylate) (POEGMA) brushes onto the surfaces and pore walls of α-Al2O3 membrane (AM) by surface-initiated atom-transfer radical polymerization (SI-ATRP). Contact-angle, Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and field-emission scanning electron microscopy (FESEM) were measured to confirm that the surfaces and pore walls of the ceramic porous membranes have been modified by the brushes with this method successfully. The protein interaction behavior with the POEGMA modified membranes (AM-POEGMA) was studied by the model protein of bovine serum albumin (BSA). A protein-resistant mechanism of AM-POEGMA was proposed to describe an interesting phenomenon discovered in the filtration experiment, in which the initial flux filtrating BSA solution is higher than the pure water flux. The fouling of AM-POEGMA was easier to remove than AM for the action of POEGMA brushes, indicated that the ceramic porous membranes modified with POEGMA brushes exhibit excellent protein resistance.  相似文献   

4.
Symmetric network poly(vinylidene fluoride) (PVDF) membranes without a dense skin layer were prepared by vapor-induced phase separation from a PVDF/N,N-dimethylacetamide (DMAc)/water system. The effects of evaporation atmosphere, temperature, and humidity during the preparation of the membranes on their morphologies were investigated by scanning electron microscope (SEM). With low temperature and high humidity, the polymer crystallization mechanism dominated the membrane formation process, and the casting solution formed membranes with symmetric morphologies in the vapor phase containing 0.79% DMAc. The effect of additives on the membrane structure and performance was also investigated. The results of adsorption experiments showed that the binding capacity of bovine serum albumin (BSA) increased with the appearance of a circular network morphology and the decrease of mean pore size of the membrane. With the addition of LiCl to the casting solution, the obtained membrane can adsorb BSA up to 150 μg/cm2. Proteins on sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis gels were successfully electro-blotted onto these PVDF membranes. Compared with commercial membranes, the PVDF membranes prepared in this work were more suitable for protein blotting.  相似文献   

5.
A laboratory filtration plant for drinking water treatment is constructed to study the conditions for purely mechanical in situ cleaning of fouled polymeric membranes by the application of ultrasound. The filtration is done by suction of water with defined constant contamination through a membrane module, a stack of five pairs of flat-sheet ultrafiltration membranes. The short cleaning cycle to remove the cake layer from the membranes includes backwashing, the application of ultrasound and air flushing. A special geometry for sound irradiation of the membranes parallel to their surfaces is chosen. Two frequencies, 35 kHz and 130 kHz, and different driving powers are tested for their cleaning effectiveness. No cleaning is found for 35 kHz, whereas good cleaning results are obtained for 130 kHz, with an optimum cleaning effectiveness at moderate driving powers. Acoustic and optic measurements in space and time as well as analytical considerations and numerical calculations reveal the reasons and confirm the experimental results. The sound field is measured in high resolution and bubble structures are high-speed imaged on their nucleation sites as well as during their cleaning work at the membrane surface. The microscopic inspection of the membrane surface after cleaning shows distinct cleaning types in the cake layer that are related to specific bubble behaviour on the membrane. The membrane integrity and permeate quality are checked on-line by particle counting and turbidity measurement of the permeate. No signs of membrane damage or irreversible membrane degradation in permeability are detected and an excellent water permeate quality is retained.  相似文献   

6.
Cleaning of the flat sheet nanofiltration membranes, using backflushing, chemical cleaning, and ultrasonication operated individually as well as in combination with chemicals, has been studied in the present work. Identical hydrophilic polyamide membranes were fouled individually using an aqueous solution containing a single dye, an aqueous solution containing a mixture of dyes, and a synthetically prepared petroleum refinery effluent. Effect of different parameters such as the concentration of cleaning solution, contact time, frequency, and power of ultrasound on the efficacy of membrane cleaning has been studied. Optimal cleaning was achieved under sonication conditions of frequency of 24 kHz and power dissipation of 135 W. It was demonstrated that application of sonication under optimum conditions without chemical agents, gave about 85% water flux recovery. In the case of combined chemical and ultrasonic treatment, it was clearly observed that the use of chemical agent increased the efficacy of ultrasonic cleaning. The hybrid method recovered the initial water flux to almost 90% based on the use of 1.0 M aqueous NaOH and 4 min of sonication. Overall, the use of aqueous NaOH in combination with sonication showed a better efficiency for cleaning than the individual processes thus demonstrating a new avenue for membrane cleaning.  相似文献   

7.
Ultrasound based on-line cleaning for membrane filtration of industrial wastewater was studied. An ultrasonic transducer was assembled in the membrane module in order to get an efficient cleaning of membranes in fouling conditions. The focus of the studies was on the effects of the ultrasound propagation direction and frequency as well as the transmembrane pressure. The more open the membrane was the easier the membrane became plugged by wastewater colloids, when the ultrasound propagation direction was from the feed flow side of the membrane. If the membrane was tight enough, the ultrasound irradiated from the feed side of the membrane increased the flux significantly. However, in the circumstances studied, the power intensity needed during filtration was so high that the membranes eroded gradually at some spots of the membrane surface. It was discovered that the ultrasonic field produced by the used transducers was uneven in pressurised conditions. On the other hand, the ultrasound treatment at atmospheric pressure during an intermission pause in filtration turned out to be an efficient and, at the same time, a gentle method in membrane cleaning. The input power of 120 W (power intensity of 1.1 W/cm2) for a few seconds was sufficient for cleaning. The flux improvement was significant when using a frequency of 27 kHz but only minor when using 200 kHz.  相似文献   

8.
In membrane process industries, membrane cleaning is one of the most important concerns from both economical and scientific points of view. Though cleaning is important to recover membrane performance, an inappropriate selection of cleaning agents may result into unsatisfactory cleaning or irreparable membrane.In this study the cleaning performance has been studied with measurements of membrane contact angle, Updated Donnan steric partitioning pore model (UDSPM) and salt rejection as well as flux measurement. Thin film nanofiltration (NF) membranes such as DK, HL and DL provided by GE Osmonics are used in this study. Tests were carried out with virgin DK, HL and DL as well as fouled DK membranes. Several cleaning agents were investigated; some of them were analytical grade such as HCl, NaOH and others such as SDS, mix agents were commercial grade agents that are already in use in commercial plants. Contact angle, DSPM and salt rejection as well as flux of virgin and fouled membranes before and after chemical cleaning were measured and compared. The contact angle measurements with and without chemical cleaning of different virgin and fouled membranes revealed very interesting results which may be used to characterise the membrane surface cleanliness. The contact angle results revealed that the cleaning agents are found to modify membrane surface properties (hydrophobicity/hydrophilicity) of the treated and untreated virgin and fouled membranes. The details of these results were also investigated and are reported in the paper. However, UDSPM method did not give any valuable information about pore size of the untreated and treated NF membranes. The salt rejection level of monovalent and divalent ions before and after cleaning by high and low pH cleaning agents is also investigated and is reported in the paper.  相似文献   

9.
It is well known that one of the main problems in galactooligosaccharide production (GOS) via tranglycosylation of lactose is the presence of monosaccharides that contribute to increasing the glycaemic index, as is the case of glucose. In this work, as well as studying the effect of ultrasound (US) on glucose oxidase (Gox) activation during gluconic acid (GA) production, we have carried out an investigation into the selective oxidation of glucose to gluconic acid in multienzymatic reactions (β-galactosidase (β-gal) and Gox) assisted by power US using different sources of lactose as substrate (lactose solution, whey permeate, cheese whey). In terms of the influence of matrix on GOS and GA production, lactose solution gave the best results, followed by cheese whey and whey permeate, salt composition being the most influential factor. The highest yields of GOS production with the lowest glucose concentration and highest GA production were obtained with lactose solution in multienzymatic systems in the presence of ultrasound (30% amplitude) when Gox was added after 1 h of treatment with β-gal. This work demonstrates the ability of US to enhance efficiently the obtainment of prebiotic mixtures of low glycaemic index.  相似文献   

10.
In this research, two types of nanofiltration membranes were prepared and evaluated for water softening. Their nanofiltration performance was evaluated by cross-flow filtration using NaCl (1 g/l) and MgSO4 (1 g/l) solution at 5 and 10 bar, 25 °C and 10 l/min. The morphological studies were performed with SEM and AFM instruments. In addition, the hydrophilicity of membranes was examined by contact angle measurements. In the first type, asymmetric polyethersulfone (PES) nanofiltration membranes were prepared using phase inversion induced by immersion precipitation technique. Different components such as polyvinylpyrrolidone (PVP), polyethyleneglycole (PEG), acrylic acid and Triton X-100 were used as additive in the PES casting solution, which lead to the formation of new asymmetric nanofiltration membranes. Two concentrations of PES (20 and 25 wt%) and two different non-solvents (pure water and mixture of water (80 vol.%) and IPA (20 vol.%)) were used for preparing asymmetric nanofiltration membranes. The morphological studies showed that the membranes prepared with non-solvent containing 20 vol.% IPA have smoother surface and smaller pores in surface and sub-layer compared to membranes prepared with pure water as non-solvent. The flux was decreased when higher polymer concentration and mixture of water and IPA were employed for membrane formation. However, NaCl and MgSO4 rejections were improved. In the second type, thin-film composite polyamide nanofiltration membrane was fabricated using interfacial polymerization of 1,3-phenylenediamine (PDA) with trimesoyl chloride (TMC). A rough and dense film was formed on the PES support membrane by interfacial polymerization. The water permeability of composite membrane was 7 and 21 kg m−2 h−1 at 5 and 10 bar, respectively. Moreover, the rejection to the MgSO4 as divalent salt (85 and 90%) was high compared to the NaCl as monovalent salt (64 and 67%).  相似文献   

11.
In this study we introduced dialdehyde groups to a commercial regenerated cellulose (RC) ultrafiltration membrane by periodate oxidation. They were further converted to nitrogen-containing derivatives by Schiff base reaction with diethylenetriamine (DETA). The modified membrane was challenged with aqueous solution containing Pb(II) metal ions. The different variables affecting the rejection of lead ion by membrane including oxidization time, concentration of DETA, initial metal ion concentration and pH of the solution were elucidated. The membranes were characterized by FTIR-ATR, SEM, EDAX and elemental analyses. The process efficiency was enhanced by improving the oxidization time up to a certain period. In our case this was diminished after 9 h due to deterioration in the membrane integrity. The Pb2+ removal was facilitated by increasing feed pH and DETA concentration. This was diminished for more concentrated metal ion in the feed. Membrane regeneration was successfully utilized using 0.1 M HNO3 solution. The removal capability of the regenerated membranes was maintained even after four cycles.  相似文献   

12.
Commercial nanofiltration (NF) thin-film composite (TFC) membranes were treated by low-pressure NH3 plasma, and the effects of the plasma treatment were investigated in terms of the membrane hydrophilicity, pure water flux, salt rejection, protein adsorption, and humic acid fouling. Experimental results indicated that the membrane surface hydrophilicity was increased by the plasma treatment, and changes in the hydrophilicity as well as membrane performance including permeate flux and fouling varied with the original membrane characteristics (e.g., roughness and hydrophilicity). Water flux of plasma treated membranes was the highest with 10 min and 90 W of plasma treatment, and salt rejection was mainly affected by the intensity of the plasma power. Results of bovine serum albumin (BSA) adsorption demonstrated that the protein adsorption decreased with increasing plasma treatment time. The plasma treatment that resulted in more negatively charged surfaces could also better prevent Aldrich humic acid (AHA) attachment on the membrane surface.  相似文献   

13.
In this research the influence of conductivity on adsorptive behavior of PM30 ultrafiltration membrane was investigated using BSA solution as the feed. The conductive membrane was prepared from the originally nonconductive membrane by chemical polymerization of pyrrole as the conducting media on the membrane surface. Both Langmuir and Redlich-Peterson isotherms properly describe the quasi-equilibrium adsorption data which are produced using experimental results of flux and rejection. Higher capacity of protein adsorption was achieved using nonconductive in comparison with conductive membrane. Using nonconductive membrane, an excessive feasibility and spontaneity of BSA adsorption was observed based on the greater negative value of Gibbs free energy change () which is a criterion for spontaneity of adsorption. Determination of filtration mechanism was conducted for elucidation the dominant adsorption region within the membranes i.e. membrane surface or internal pores. The filtration mechanisms for BSA solution using nonconductive and conductive membranes were surface cake deposition and intermediate (partial) blocking, respectively. First-order-kinetic model versus second-order-kinetic model indicated a superior interpretation of adsorption kinetics for both membranes; however, the required time to reach to the equilibrium for nonconductive membrane was slightly higher. All the distinctions in adsorption behavior of the conductive membrane originate from the repulsive potential field appears on the surface of the membrane during preparation. This electrostatic field acts as a barrier against the passage of the negatively charged proteins. Moreover, the partial coverage of membrane surface and internal pores with poly(pyrrole) may reduce the quantity of the active adsorptive sites on the membrane surface and matrix or presumably deactivates a part of the sites.  相似文献   

14.
The hydrophobic properties of γ-Al2O3 membrane have been obtained by grafting fluoroalkylsilane (FAS) on the surface of the membrane. The following grafting parameters were studied: the eroding time of the original membrane, the grafting time, the concentration of FAS solution and the multiplicity of grafting. Hydrophobicity of the membranes was characterized by contact angle (CA) measurement. The thermogravimetric analysis (TGA) was used to investigate the weight loss process (25–800 °C) of the fluoroalkylsilane grafted on Al2O3 powders under different grafting conditions. The morphologies of the membranes modified under different parameters were examined by field emission scanning electron microscopy (FE-SEM) and the surface roughness (Ra) was measured using white light interferometers. A needle-like structure was observed on the membrane surface after modification, which causes the change of Ra. On the results above, we speculated a model to describe the reaction between FAS and γ-Al2O3 membrane surface as well as the formed surface morphology.  相似文献   

15.
Enhancing permeation in microfiltration (MF) hollow fiber membrane process was studied under ultrasound (US) by means of reflection technique. The US effect on the enhanced membrane process depended on the position of membrane module with or without a semi-cylindrical shaped reflection plate placed behind the membrane module. Evidence was presented that the membrane process influenced the detected sonic pressure distribution in the US bath. The correlation of sound pressure intensity and luminol fluorescence intensity suggested that violent collapse of cavity bubbles supported the enhanced membrane permeability of MF module in the US bath.  相似文献   

16.
In this work, the effect of surface modification on proton transfer resistance of the membrane and/or membrane surface interface is investigated. Cation exchange membranes, PE01 and Nafion1135, were modified by zirconium phosphate (ZrP) and inorganic-organic composite membranes were prepared. α-ZrP (α-Zr(HPO4)2 · H2O) was deposited on the composite membrane surface as verified by XRD and SEM. Zeta potential of the composite membrane decreases with the increase of immersion time, indicating that the deposition α-ZrP results in a decrease of membrane surface charge density. The proton transfer resistance measured by AC impedance technique in 0.05 mol/L H2SO4 solution shows an interesting result: the proton transfer resistance of membrane-solution (Ze) sharply reduces while proton transfer resistance of membrane (Zm) increases slightly with the immersion time for both of the membranes. The slight increase of Zm is due to the deposit of ZrP on membrane surface, and the sharp decrease of Ze is attributed to the decrease in the static electrical interaction strength between counterions and the charged groups of the membrane, which is caused by interact of α-ZrP with the ion exchange groups resulting in a reduction of membrane surface charge density. The equivalent circuit models for electrode/solution/membrane/solution/electrode system and electrode/solution system were examined. The results observed in this work seem very interesting in the ion transfer study between phase interfaces.  相似文献   

17.
MXene, a new family of two dimensional materials, was utilized as a sonocatalyst in an ultrasonic treatment (US) process for removal of methylene blue (MB) and acid blue 80 (AB). The physico-chemical properties of MXene were characterized using scanning electron microscopy, transmission electron microscopy, porosimetry, and a zeta potential analyzer. Degradation of dyes by US was systemically investigated under several experimental conditions including: power density of US (45, 90, 135, and 180 W L−1), frequency of US (28 and 970 kHz), pH of dye solution (3.5, 7, and 10.5), solution temperature (293, 303, and 313 K), and addition of hydroxyl radical promotor (H2O2) and scavenger (t-BuOH) to concentrations of 25 mM. Based on the experimental results, the quantity of H2O2, which was used as an indicator of hydroxyl radical concentration, was an important factor in determining the degradation rate of MB and AB in this US study. Additionally, synergetic indices for removal of both dyes were higher than 1.0 in all cases, indicating the outstanding efficiency of MXene as a sonocatalyst in the US reactor for removal of both, due to an increase in both (i) the quantity of H2O2 in the US reactor and (ii) active sites for adsorbates from dispersion effects. A stability test on MXene in the US process was conducted using X-ray diffraction and five-cycle recycling performance tests. Based on our experimental data, MXene can be utilized as a sonocatalyst in the US process for a high removal rate for dyes (e.g., MB).  相似文献   

18.
Ultrasound (US) serves as a stimulus to change shear viscosity of aqueous polysaccharides of ι-carrageenan, κ-carrageenan and, agar. The US effect was compared in their aqueous solutions at 60 °C for the US frequency of 23, 45, and 83 kHz. Under the US condition with 50 W at 45 kHz, the shear viscosity of each aqueous solution was decreased significantly. Subsequently, when the US was stopped, the shear viscosity returned back to the original value. In addition, the US showed different effects of the US frequency over the viscosity change in the three kinds of polysaccharides. When the US frequency was changed, the US effects were less at 83 kHz and 28 kHz for the shear viscosity change. In addition, as NaCl was present in the aqueous solution, the viscosity change decreased by the US exposure. These results suggest that the US effect on the viscosity reduction was influenced by the condition of polymer coil conformation, which was expanded or shrank by electrostatic repulsion of the SO3? groups. FT-IR analysis supported that the hydrogen bonds of carrageenans were broken during the US exposure. Using Fourier self-deconvolution for the FT-IR spectra without and with US exposure suggests that the US influenced the hydrogen bonds of water and the OH group of polysaccharides.  相似文献   

19.
Ultrasound (US) has been suggested for many whey processing applications. This study examined the effects of ultrasound treatment on the oxidation of lipids in Cheddar cheese whey. Freshly pasteurized whey (0.86 L) was ultrasonicated in a contained environment at the same range of frequencies and energies for 10 and 30 min at 37 °C. The US reactor used was characterized by measuring the generation of free radicals in deionized water at different frequencies (20–2000 kHz) and specific energies (8.0–390 kJ/kg). Polar lipid (PL), free and bound fatty acids and lipid oxidation derived compounds were identified and quantified before and after US processing using high performance liquid chromatography equipped with an evaporative light scattering detector (HPLC–ELSD), methylation followed by gas chromatography flame ionized detector (GC-FID) and solid phase micro-extraction gas chromatography mass spectrometry (SPME-GCMS), respectively. The highest concentration of hydroxyl radical formation in the sonicated whey was found between 400 and 1000 kHz. There were no changes in phospholipid composition after US processing at 20, 400, 1000 and 2000 kHz compared to non-sonicated samples. Lipid oxidation volatile compounds were detected in both non-sonicated and sonicated whey. Lipid oxidation was not promoted at any tested frequency or specific energy. Free fatty acid concentration was not affected by US treatment per se. Results revealed that US can be utilized in whey processing applications with no negative impact on whey lipid chemistry.  相似文献   

20.
The primary goal of this study is to develop a novel PEMs with unique surface structure utilizing the high viscosity of the impregnation solution. SiO2 nanofiber mats were prepared via the electrospinning method and introduced into sulfonated poly(ether sulfone) (SPES) matrix to prepare hybrid membrane. The effect of concentration of impregnation solution on the morphology and properties of the proton exchange membranes (PEMs), including thermal stability, water uptake, dimensional stability, proton conductivity, and methanol permeability were investigated. SEM results showed that a unique surface structure was prepared due to the high solution concentration. Moreover, the hydrophilic nanofibers on the surface constructed continuous proton pathways, which can enhance the proton conductivity of the membranes, a maximum proton conductivity of 0.125 S/cm was obtained when the SPES concentration was 40 wt% at 80 °C, and the conductivity was improved about 1.95 times compared to that of pure SPES membrane. The SiO2 nanofiber mat-supported hybrid membrane could be used as PEMs for fuel cell applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号