首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Borate based thermoluminescence dosimeters (TLD) show high sensitivity and good TL characteristics. One of the promising material amongst the dosimeters is Dy doped CaB4O7. Spectrally resolved thermoluminescence of Dy doped CaB4O7 shows three glow peaks at about 50 °C, 240 °C and 380 °C, the intensity of the 240 °C glow peak being the maximum. All TL experiments were conducted on a high sensitivity TL spectrometer at Sussex University with a heating rate of 50 °C min?1. Two main emissions associated with the Dy dopant are observed at ~480 and 580 nm. The samples were subjected to a series of treatments including excitation by X-rays and UV laser radiation. As part of the present research CaB4O7:Dy materials were subjected to two different heat treatments; quenching and slow cooling in order to investigate the changes in TL characteristics.  相似文献   

2.
《Journal of luminescence》2003,65(2-4):89-96
Photo-luminescence studies of Pr3+ activated thorium oxide phosphor have revealed that mainly 3P→3H4 and 1D23H4 transitions with life-time of 30 and 600 μs are observed in this sample. An exponential reduction in the emission intensity of Pr3+ ions was observed on following continuous excitation with 275 nm corresponding to the f–d transition band of Pr3+ ions. Such a reduction in emission intensity was observed at all temperatures investigated in the range 90–330 K. The emission intensity recovered partially on dark storage only above 180 K. The recovery of emission intensity was also observed on the illumination of pre-exposed sample to light in the wavelength region 300–430 nm. Following illumination with 275 nm, Pr3+ activated thorium oxide phosphor has displayed a weak thermally stimulated luminescence. These results thus suggest that the optical excitation dynamically changes the state of the system under observation, and that changes are occurring in the valence state of Pr ions due to e/h transfer process on 275-nm exposure. On dark storage and also on 365-nm illumination of the pre-exposed sample, e/h traps recombine to cause emission signal recovery. The analysis of data on reduction in intensity obtained with exposure to 275 nm suggests the likelihood of the of Pr3+ ions existing at three different sites. The activation energies associated with the release of electrons from excited Pr3+ ions at different sites were determined from the temperature dependence of the photo-induced charge transfer process.  相似文献   

3.
The CaSO4:Eu powder composites with and without silver nanoparticles (NP) with selected grain size were analysed by thermoluminescence (TL), photoluminescence (PL) and time-resolved spectroscopy. Both Eu2+ and Eu3+ species are present. The former was identified by the emission around 380 nm and the latter by its typical 5D07FJ transitions and two sites were identified. The addition of silver as nanoparticles enhances the TL signal (240 °C), which is adequate for dosimetry, and has quenching effect on the PL properties, because the most intense luminescence comes from the sample without silver and the lifetimes of the ionic species are not sensitive to the presence of Ag(NP).  相似文献   

4.
Nanoparticles of Mg2SiO4:Eu3+ have been prepared by the solution combustion technique and the grain size estimated by PXRD is found to be in the range 40–50 nm. Ionoluminescence (IL) studies of Mg2SiO4:Eu3+ pellets bombarded with 100 MeV Si8+ ions with fluences in the range 1.124–22.48×1012 ions cm?2 are carried out at IUAC, New Delhi, India. Five prominent IL bands with peaks at 580 nm, 590 nm, 612 nm, 655 nm and 705 nm are recorded. These characteristic emissions are attributed to the luminescence centers activated by Eu3+ cations. It is found that IL intensity decreases rapidly in the beginning. Later on, the intensity decreases slowly with further increase of ion fluence. The reduction in the ionoluminescence intensity with increase of ion fluence might be attributed to degradation of Si–O (ν3) and Si–O (2ν3) bonds present on the surface of the sample. The red emission with peak at 612 nm is due to characteristic emission of 5D07F2 of the Eu3+ cations. Thermoluminescence (TL) studies of Mg2SiO4:Eu3+ pellets bombarded with 100 MeV Si8+ cations with fluences in the range 5×1011 ions cm?2 to 5×1013 ions cm?2 are made at RT. Two prominent and well resolved TL glows with peaks at ~220 °C and ~370 °C are observed. It is observed that TL intensity increases with increase of ion fluence. This might be due to creation of new traps during swift heavy ion irradiation.  相似文献   

5.
Thermo-and photostimulated luminescence of CaI2: Tl and CaI2: Pb scintillation crystals under optical and X-ray excitation is studied. It is shown on the basis of the results obtained with account for the data of studies of photo-and X-ray-luminescent properties of these scintillators that Tl+ and Pb2+ ions form complex capture centers with host defects. These centers are responsible for the thermostimulated luminescence in the temperature range of 150–295 K, and the centers of charge carrier trapping are spatially separated from the centers of recombination emission. An assumption is made that thermo-and photostimulated luminescence of CaI2: Tl and CaI2: Pb crystals under optical excitation is observed mainly due to the delocalization of charge carriers from hydrogen-containing centers responsible for the excitation band at 236 nm and the photoluminescence of CaI2 with a maximum at 395 nm. The luminescence of CaI2: Tl crystals in the 510-nm band and CaI2: Pb crystals in the 530-nm band is determined by the radiative decay of near-activator excitons.  相似文献   

6.
Small size (25 nm) Li2B4O7 nanoparticles doped with different concentrations of Cu, Ag and co-doped with Cu, Ag were prepared by solid state sintering at 700 °C. The crystalline phase and particle sizes analysis were carried out by XRD and TEM. FTIR study reveals the formation of vibrational bonds at 1600–1200 cm−1, 1500–700 cm−1, 950–870 cm−1 and 870–415 cm−1. The kinetic parameters of the TL glow curves were evaluated using CGCD procedure in R-software. The CW-OSL decay curves were fitted with third order exponential decay curves and photoionization cross sections of each component were evaluated. The lifetime of the main TL dosimetric peak were also calculated to check the stability of the signal. Dose responses of the synthesized Li2B4O7 nanoparticles for both the TL and CW-OSL were studied in the range of 0.02 mGy to50 Gy and found to be linear upto this range. Fading of the CW-OSL decay curves were also studied. The MDD of the synthesized samples were also calculated and observed to be 15 μGy.  相似文献   

7.
In this work, α-Al2O3 doped either with Tb3+ or Tm3+ was prepared by combustion synthesis techniques for thermoluminescent (TL) ionizing radiation dosimetry applications. In this method, the reactants (aluminum nitrate, urea and therbium or thulium nitrate) are ignited in a muffle furnace at temperatures as low as 500 °C. This synthesis route is an alternative technique to the conventional fabrication methods of materials based on α-Al2O3 (Czochralsky, Vernuil), where high melting temperatures and reducing atmospheres are required. After combustion, the samples were annealed at temperatures ranging from 1000 to 1400 °C for 4 h in order to obtain the pure α-phase structure and were then irradiated with a Co-60 gamma radiation source. The annealed samples present a well defined TL glow peak with a maximum at approximately 200 °C and linear TL response in the dose range 0.5–5 Gy. It was observed that a 0.1 mol% concentration of Tb3+ or Tm3+ and annealing at 1400 °C optimize the TL sensitivity. The highest sensitivity was found for Tm3+ doped samples which were approximately 25 times more sensitive than Tb3+ doped samples. These results strongly suggest that combustion synthesis is a suitable technique to prepare doped aluminum oxide material and that Tm3+ doped aluminum oxide is a potential material for TL radiation dosimetry.  相似文献   

8.
Optical spectra (absorption, emission, excitation, decay) and dielectric relaxation were measured for divalent europium and partially for ytterbium in lanthanum fluoride crystals. Optical absorption of LaF3–Eu2+ contains not only asymmetric weakly structured band at 245 nm but also less intense bands at 330, 380 nm. Broadband Eu2+ emission at 600 nm appeared below 80 K with decay time 2.2 μs at 7.5 K. Emission at 600 nm is attributed to so-called anomalous luminescence. Bulk conductivity is directly proportional to absorption coefficient of Eu2+ bands. Dielectric relaxation peak of LaF3–EuF3 is attributed to rotation of dipoles Eu2+-anion vacancy. The long-wavelength absorption at 300–400 nm region are assigned to transitions from 4f7Eu2+ ground state to states of neighbouring fluorine vacancy.  相似文献   

9.
Nd3+ 1%, 5% and 10% doped BaF2 single crystals were grown by the micro-pulling down method. Photoluminescence properties, including excitation and emission spectra and luminescence decay were measured under synchrotron radiation excitation at the Superlumi station in HASYLAB at DESY (Hamburg, Germany). The Nd3+ related 5d-4f emission lines peaking around 180 nm, 230 nm, and 260 nm, identified as the 5d–4Ij, 5d–4Fj, and 5d–2Gj transitions, were observed under 140–168 nm excitation. In photoluminescence decay under the 160 nm excitation, the dominant component decay time is about 12, 2.5 and 1.2 ns for Nd3+ 1%, 5% and 10% concentration, respectively. The decay time shortening is explained by the concentration quenching effect. Transmittance of Nd1% sample is about 80% for wavelengths above 185 nm. Finally, gamma-ray responses, non-proportionality and energy resolution of Nd1% sample were compared with the undoped BaF2 scintillator. The light yield of the Nd1%:BaF2 is about 93% of that of undoped BaF2. ©2009 Elsevier Ltd. All rights reserved.  相似文献   

10.
The results of a comparative research of thermoluminescence (TL) of TLD-500 detectors based on anion-defective corundum irradiated with continuous and pulsed X-ray and pulsed electron beams in a range of doses of 0.3 ÷ 107 Gy, dose rates of 0.02–2.6·1011 Gy/s, and in a temperature range of 300–950 K are presented. It is found that, in contrast to continuous irradiation, upon pulsed irradiation with a duration of 10 ns and dose rate of PP ≥ 5·106 Gy/s, the first linear region of dose dependences for TL peaks at 450, 580 and 830 K is, instead of saturation, followed by a second one with a smaller slope at doses near 2, 200 and 103 Gy. Moreover, the slope of the second region increases with growing PP. It was also found that dose dependence for the peak at 830 K in the area of the first linear region at 10–103 Gy remains invariable at PP ≤ 1010 Gy/s. It is shown that the upper limit of doses registered by TLD-500 detectors can be increased to 2·103 and 6·106 Gy for continuous and pulsed irradiation, respectively. New broadband UV luminescence with a maximum hν = 4.1 eV and half width H = 0.85 eV was registered within the TL peak spectrum at 830 K. Besides, the optical depletion spectrum in which a single band with hν = 5.2 eV and H = 1.6 eV is observed was investigated for a trap causing a peak at 830 K.  相似文献   

11.
Thermoluminescence (TL) measurements were carried out on undoped and Mn2+ doped (0.1 mol%) yttrium aluminate (YAlO3) nanopowders using gamma irradiation in the dose range 1–5 kGy. These phosphors have been prepared at furnace temperatures as low as 400 °C by using the combustion route. Powder X-ray diffraction confirms the orthorhombic phase. SEM micrographs show that the powders are spherical in shape, porous with fused state and the size of the particles appeared to be in the range 50–150 nm. Electron Paramagnetic Resonance (EPR) studies reveal that Mn ions occupy the yttrium site and the valency of manganese remains as Mn2+. The photoluminescence spectrum shows a typical orange-to-red emission at 595 nm and suggests that Mn2+ ions are in strong crystalline environment. It is observed that TL intensity increases with gamma dose in both undoped and Mn doped samples. Four shouldered TL peaks at 126, 240, 288 and 350 °C along with relatively resolved glow peak at 180 °C were observed in undoped sample. However, the Mn doped samples show a shouldered peak at 115 °C along with two well defined peaks at ~215 and 275 °C. It is observed that TL glow peaks were shifted in Mn doped samples. The kinetic parameters namely activation energy (E), order of kinetics (b), frequency factor (s) of undoped, and Mn doped samples were determined at different gamma doses using the Chens glow peak shape method and the results are discussed in detail.  相似文献   

12.
A novel white-light emitting CaAl2SiO6: Ce3+, Tb3+ phosphor has been prepared by a sol–gel method. X-ray diffractometry and spectrofluorometry were used to characterize structural and optical properties of the samples. The results indicate that the crystal structure of the phosphor is a single phase of CaAl2SiO6. The excitation band of the phosphor covers a wide region from 240 nm to 380 nm. CaAl2SiO6: Ce3+, Tb3+ phosphors show four emission bands: one at 400 nm for Ce3+ and three at 487 nm, 543 nm and 585 nm for Tb3+. With appropriate tuning of Tb3+ content, white light with different hues can be achieved under UV radiation. The energy transfer mechanism from Ce3+ to Tb3+ in CaAl2SiO6 host was demonstrated to be dipole–dipole interaction.  相似文献   

13.
Glasses containing silver, tin and europium were prepared by the melt-quenching technique with silver nanoparticles (NPs) being embedded upon heat treatment (HT). An intensification of Eu3+ ions emission was observed for non-resonant excitation around 270 nm, corresponding to UV absorption in the material. Optical measurements suggest that light absorption occurs at single Ag+ ions and/or twofold-coordinated Sn centers followed by energy transfer to europium which results in populating the 5D0 emitting state in Eu3+. After HT at 843 K, a quenching effect is observed on Eu3+ luminescence with increasing holding time in the 350–550 nm excitation range. The quenching effect shows with the presence of Ag NPs which may provide multipole radiationless pathways for excitation energy loss in europium ions.  相似文献   

14.
The photoluminescence (PL) and PL excitation spectra of CaGa2S4 polycrystals doped with praseodymium are studied in the regions of the activator absorption and the fundamental absorption of the host. It is found that the PL excitation spectrum consists of two regions: broadband absorption in the range of 200-380 nm corresponding to the fundamental absorption of the host and the narrow-band absorption of the dopant in the range of 430–515 nm. The luminescence spectra are different for different excitation wave-lengths, which occurs because Pr3+ ions substitute divalent cations occupying different crystallographic positions in the host crystal lattice.  相似文献   

15.
Nd3+-doped TiO2–SiO2 composites were prepared by sol–gel method. Optical properties such as radiative life-time (τ), stimulated emission cross-section (σp) and branching ratio (β) were calculated using Judd–Ofelt theory. Violet to blue upconversion emissions at 380 nm (4D3/24I11/2), 399 nm (2P3/24I11/2), 420 nm (2D5/24I9/2) and 452 nm (2P3/24I13/2) were obtained under 578 nm xenon-lamp excitation. The choice of 578 nm is justified by the absorption spectra of the same samples, which shows a strong absorption peak at 578 nm. This 578 nm excitation pump produces upconversion in Nd3+ by a sequential two-photon absorption process.  相似文献   

16.
LaAlO3 single crystals grown under hydrothermal conditions and co-doped with Ce and Dy atoms have been recently reported to show high thermoluminescent (TL) outputs for ultraviolet (UV) radiation fields (Oliveira et al., 2011). Due to this property, they have been considered for further investigation for applications in UV dosimetry. Encouraged by these results, we start an investigation about the TL properties of polycrystalline LaAlO3 grown by an alternative method. In this method, equimolar amounts of Al2O3 and La2O3 are sintered, producing polycrystalline LaAlO3 powder. Polycrystals doped with amounts of carbon ranging from 0.0 to 5.0 at.% were synthesized by sintering under hydrogen reducing atmosphere. After irradiation with a UV commercial lamp, the best TL outputs were observed for the undoped sample. The recorded TL glow curves show a main TL peak centered at 175 °C. The TL emission spectrum show a broad emission peak centered at 634 nm and another three narrow peaks centered at 724 nm, 738 nm and 754 nm, respectively. The undoped material show a huge TL output response for UV spectral irradiances ranging from 0.04 to 1.68 mJ cm−2 that can be fitted by a 2nd order polynomial regression. The investigation demonstrates that undoped polycrystalline LaAlO3 crystals sintered under reducing atmosphere are very attractive to be investigated as high sensitivity ultraviolet TL dosimeters.  相似文献   

17.
The luminescent properties of an Eu2+-activated hexagonal aluminate, BaMgAl10O17 (BAM), were studied under 147- and 254-nm excitations. The BAM samples were thermally treated by baking and then irradiated in vacuum ultraviolet (VUV) rays. The results show that the emission efficiency of Eu2+ in BAM under 147-nm excitation degraded seriously after baking or VUV-irradiating treatments, while no significant degradation was observed under 254-nm excitation. The degree of degradation depended on the excitation wavelength, and the absorption edge of the BAM host was suggested to be close to 175 nm (7.2 eV). The differences between the thermal-induced and the VUV-irradiation-induced degradations, and their mechanisms are discussed for the color plasma display applications.  相似文献   

18.
Photoluminescence and excitation spectra of the spinel-type MgGa2O4 with 0.5 mol. % Mn2+ ions and Eu3+ content from 0 to 8 mol. % have been investigated in this work at room temperature. Polycrystalline samples were synthesized via high-temperature solid-state reaction method. Photoluminescence spectra of all samples exhibit host emission presented by a broad “blue” band peaking ∼430 nm, which consists of at least three elementary bands that correspond to different host defects. Excitation of the host luminescence showed the broad band with a maximum at 360 nm. Characteristic bands of d–d transitions of Mn2+ ions and f–f transitions of Eu3+ ions together with charge-transfer bands (CTB) of these ions were also found on the excitation spectra. Mn2+ and Eu3+ co-doped samples emit in green and red spectral regions. Mn2+ ions are responsible for the green emission band at 505 nm (4Т16А1 transition). The studies of photoluminescence spectra of activated samples with different Eu3+ ions content show characteristic f–f luminesecence of Eu3+ ions. The maximum of Eu3+ emission was found at 618 nm (5D07F2) and optimal concentration of activator ions was around 4 mol. %.  相似文献   

19.
《Current Applied Physics》2014,14(8):1067-1071
Dy3+ doped BaYF5 nanoparticles with tetragonal structure were synthesized by hydrothermal method and solvothermal method. The structural and the luminescent properties of the samples were characterized by X-ray diffraction pattern, TEM and photoluminescence spectra. Emission of Dy3+ originated from 4I15/2 located at 450 nm and 4F9/2 located at 478 nm, 573 nm and 660 nm were observed under excitation of 355 nm laser. Behavior of fluorescence intensity ratio with temperature increasing from room temperature to approximately 800 K was investigated. And the optimum temperature range for thermometry is obtained to be 550–800 K according to its sensitivity-temperature relation, indicating the potential application of BaYF5:Dy3+ as a luminescent temperature sensor.  相似文献   

20.
Undoped and Eu3+ activated Ln3BWO9 (Ln=Y, La, Gd) were prepared by the Pechini method and characterized with X-ray diffraction (XRD) and ultraviolet (UV) spectroscopy. All the samples have the hexagonal phase after heat treatment in the range of 850–1000 °C. The Eu3+ doped samples emit high-purity red light with peak maximum at about 617 nm under excitation of UV light (~285 nm) at room temperature. When the doping concentration of Eu3+ is about 20–30%, luminescence intensity reaches the maximum. Luminescence decay curves indicate that Ln3BWO9:Eu3+ exhibits a fast decay time of about 0.5 ms. A possible luminescence mechanism has also been proposed. It is worth noting that both the absorption of host lattice and the charge transfer (CT) transition of Eu3+ are of great importance to the promising luminescent performance of Ln3BWO9:Eu3+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号