首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present work deals with the removal of Brilliant Green dye from wastewater using a poly(acrylic acid) hydrogel composite (PAA-K hydrogel) prepared by incorporation of kaoline clay. The composite has been synthesized using ultrasound assisted polymerization process as well as the conventional process, with an objective of showing the better effectiveness of ultrasound assisted synthesis. It has been observed that the hydrogel prepared by ultrasound assisted polymerization process showed better results. The optimum conditions for the removal of dye are pH of 7, temperature of 35 °C, initial dye concentration of 30 mg/L and hydrogel loading of 1 g. The extent of removal of dye increased with an increase in the contact time and initial dye concentration. A pseudo-second-order kinetic model has been developed to explain the adsorption kinetics of dye on the PAA-K hydrogel. Thermodynamic and kinetic parameters indicate that the adsorption process is spontaneous in nature and the PAA-K hydrogel prepared by ultrasound process is a promising adsorbent compared to conventional process. The obtained adsorption data has also been fitted into commonly used adsorption isotherms and it has been found that Freundlich as well as Langmuir adsorption isotherm models fits well to the experimental results.  相似文献   

2.
The current work deals with the value addition of lactose by transforming into hydrolyzed lactose syrup containing glucose and galactose in major proportion using the novel approach of ultrasound assisted acid catalyzed lactose hydrolysis. The hydrolysis of lactose was performed in ultrasonic bath (33 kHz) at 50% duty cycle at different temperatures as 65 °C and 70 °C and two different hydrochloric acid (HCl) concentrations as 2.5 N and 3 N. It was observed that acid concentration, temperature and ultrasonic treatment were the major factors in deciding the time required to achieve ∼90% hydrolysis. The ultrasonic assisted approach resulted in reduction in the reaction time and the extent of intensification was established to be dependent on the temperature, acid concentration and time of ultrasonic exposure. It was observed that the maximum process intensification obtained by introduction of ultrasound in the lactose hydrolysis process performed at 70 °C and 3 N HCl was reduction in the required time for ∼90% hydrolysis from 4 h (without the presence of ultrasound) to 3 h. The scale-up study was also performed using an ultrasonic bath with longitudinal horn (36 kHz as operating frequency) at 50% duty cycle, optimized temperature of 70 °C and acid concentration of 3 N. It was observed that the reaction was faster in the presence of ultrasound and stirring by axial impeller at rpm of 225 ± 25. The time required to complete ∼90% of hydrolysis remained almost the same as observed for small scale study on ultrasonic bath (33 kHz) at 50% duty cycle. The use of recovered lactose from whey samples instead of pure lactose did not result in any significant changes in the progress of hydrolysis, confirming the efficacy of the selected approach. Overall, the work has presented a novel ultrasound assisted approach for intensified lactose hydrolysis.  相似文献   

3.
The present study was aimed to removal of Cu(II) ions from aqueous solution by ultrasound-assisted adsorption onto the granular activated carbon obtained from hazelnut shells. The attention was focused on modeling the equilibrium and kinetics of Cu(II) adsorption onto the granular activated carbon. The granular activated carbon was prepared from ground dried hazelnut shells by simultaneous carbonization and activation by water steam at 950 °C for 2 h. Adsorption isotherm data were better fitted by the Langmuir model than the Freundlich model in both the absence and the presence of ultrasound. The maximum adsorption capacity of the adsorbent for Cu(II), calculated from the Langmuir isotherms, in the presence of ultrasound (3.77 mmol/g) is greater than that in the absence of ultrasound (3.14 mmol/g). The adsorption process in the absence and the presence of ultrasound obeyed to the pseudo second-order kinetics. The removal of Cu(II) ions was higher in the presence of ultrasound than in its absence, but ultrasound reduced the rate constant. The intraparticular diffusion model indicated that adsorption of Cu(II) ions on the granular activated carbon was diffusion controlled as well as that ultrasound promoted intraparticular diffusion.  相似文献   

4.
《Ultrasonics sonochemistry》2014,21(4):1374-1381
Conventional and ultrasound-assisted hydrolysis and subsequent esterification of Nagchampa oil under mild operating conditions have been investigated with an objective of intensification of methyl esters production using a sustainable approach. The effect of ratio of reactants, temperature, enzyme loading, pretreatment of enzyme (using ultrasonic irradiations) on the hydrolysis and esterification reaction has been studied. Optimum conditions for hydrolysis were observed to be 1:1 weight ratio of oil: water for Lip Z and 1:3 for Lip 2 enzymes, enzyme loading of 400 units for Lip Z and 800 mg for Lip 2 enzymes and reaction time of 6 h. In the case of esterification reaction, optimum conditions obtained were oil to methanol molar ratio of 1:2, enzyme loading of 1000 mg and reaction time of 20 h. Use of pretreated enzyme (using ultrasonic irradiations) was found to increase the extent of esterification reaction from 75% to 92.5%. It was observed that use of ultrasound in the reaction significantly intensified the esterification reaction with time requirement reducing from 20 h for conventional stirring based approach to only about 7.5 h in the presence of ultrasound. The extent of esterification obtained with sonicated enzyme also increased to 96% from 75% with unsonicated enzyme.  相似文献   

5.
A method based on application of ZnO nanorods loaded on activated carbon (ZnO-NRs-AC) for adsorption of Bromocresol Green (BCG) and Eosin Y (EY) accelerated by ultrasound was described. The present material was synthesized under ultrasound assisted wet-chemical method and subsequently was characterized by FE-SEM, TEM, BET and XRD analysis. The extent of contribution of conventional variables like pH (2.0–10.0), BCG concentration (4–20 mg L−1), EY concentration (3–23 mg L−1), adsorbent dosage (0.01–0.03 g), sonication time (1–5 min) and centrifuge time (2–6 min) as main and interaction part were investigated by central composite design under response surface methodology. Analysis of variance (ANOVA) was adapted to experimental data and guide the best operational conditions mass by set at 6.0, 9 mg L−1, 10 mg L−1, 0.02 g, 4 and 4 min for pH, BCG concentration, EY concentration, adsorbent dosage, sonication and centrifuge time, respectively. At these specified conditions dye adsorption efficiency was higher than 99.5%. The suitability and well prediction of optimum point was tested by conducting five experiments and respective results revel that RSD% was lower than 3% and high quality of fitting was confirmed by t-test. The experimental data were best fitted in Langmuir isotherm equation and the removal followed pseudo second order kinetics. The experimentally obtained maximum adsorption capacities were estimated as 57.80 and 61.73 mg g−1 of ZnO-NRs-AC for BCG and EY respectively from binary dye solutions. The mechanism of removal was explained by boundary layer diffusion via intraparticle diffusion.  相似文献   

6.
Palladium-catalyzed Suzuki-Miyaura cross-coupling reaction is a significant reaction for obtaining industrially important products. The current research work deals with intensification of reaction of 4-bromoanisole and phenylboronic acid catalyzed with 5 wt% Pd/C (5% by weight Pd supported on C available as commercial catalyst) using ultrasound and more importantly, without use of any additional phase transfer catalyst. Heterogeneous catalyst has been selected in the present work so as to harness the benefits of easy separation and the possible limitations of heterogeneous operation are minimized by introducing ultrasonic irradiations. The effect of operating parameters such as ultrasound power, temperature, catalyst loading and molar ratio on the progress of reaction has been investigated. It has been observed that an optimum power, temperature and catalyst loading exist for maximum benefits whereas higher molar ratio was found to be favourable for the progress of the reaction. Also, the use of ultrasound reduced the reaction time from 70 min required in conventional approach to only 35 min under conditions of frequency of 22 kHz, power dissipation of 40 W and catalyst loading as 1.5 mol% (refers to total quantum of catalyst used in the work) in ethanol-water system under ambient conditions. The work also demonstrated successful results at ten times higher volume as compared to the normally used volumes in the case of simple ultrasonic horn. Overall, the work has successfully demonstrated process intensification benefits obtained due to the use of ultrasound for heterogeneously catalyzed Suzuki-Miyaura cross-coupling reaction.  相似文献   

7.
Investigation into newer routes of biodiesel synthesis is a key research area especially due to the fluctuations in the conventional fuel prices and the environmental advantages of biodiesel. The present work illustrates the use of sonochemical reactors for the synthesis of biodiesel from waste cooking oil. Transesterification of used frying oil with methanol, in the presence of potassium hydroxide as a catalyst has been investigated using low frequency ultrasonic reactor (20 kHz). Effect of different operating parameters such as alcohol–oil molar ratio, catalyst concentration, temperature, power, pulse and horn position on the extent of conversion of oil have been investigated. The optimum conditions for the transesterification process have been obtained as molar ratio of alcohol to oil as 6:1, catalyst concentration of 1 wt.%, temperature as 45 °C and ultrasound power as 200 W with an irradiation time of 40 min. The efficacy of using ultrasound has been compared with the conventional stirring approach based on the use of a six blade turbine with diameter of 1.5 cm operating at 1000 rpm. Also the purification aspects of the final product have been investigated.  相似文献   

8.
《Ultrasonics sonochemistry》2014,21(6):2010-2019
This paper concerns a preliminary study for a new copper recovery process from ionic solvent. The aim of this work is to study the reduction of copper in Deep Eutectic Solvent (choline chloride–ethylene glycol) and to compare the influence of temperature and the ultrasound effects on kinetic parameters. Solutions were prepared by dissolution of chloride copper salt CuCl2 (to obtain Copper in oxidation degree II) or CuCl (to obtain Copper in oxidation degree I) and by leaching metallic copper directly in DES. The spectrophotometry UV–visible analysis of the leached solution showed that the copper soluble form obtained is at oxidation degree I (Copper I). Both cyclic voltammetry and linear voltammetry were performed in the three solutions at three temperatures (25, 50 and 80 °C) and under ultrasonic conditions (F = 20 kHz, PT = 5.8 W) to calculate the mass transfer diffusion coefficient kD and the standard rate coefficient k°. These parameters are used to determine that copper reduction is carried out via a mixed kinetic-diffusion control process. Temperature and ultrasound have the same effect on mass transfer for reduction of CuII/CuI. On the other hand, temperature is more beneficial than ultrasound for mass transfer of CuI/Cu. Standard rate constant improvement due to temperature increase is of the same order as that obtained with ultrasound. But, by combining higher temperature and ultrasound (F = 20 kHz, PT = 5.6 W at 50 °C), reduction limiting current is increased by a factor of 10 compared to initial conditions (T = 25 °C, silent), because ultrasonic stirring is more efficient in lower viscosity fluid. These values can be considered as key-parameters in the design of copper recovery in global processes using ultrasound.  相似文献   

9.
The current work deals with understanding the fundamental aspects of intensified recovery of lactose from paneer (cottage cheese) whey using the anti-solvent induced sonocrystallization. Ultrasonic horn (22 kHz) with varying power levels over the range of 40–120 W has been used for initial experiments at 100% duty cycle and two different levels of ultrasonic exposure time as 10 min and 20 min. Similar experiments were also performed using ultrasonic bath for the same time of exposure but with at two ultrasonic frequencies (22 kHz and 33 kHz). It was observed that the lactose recovery as well as purity increased with an increase in ultrasonic power at 100% duty cycle for the case of treatment time as 10 min whereas the lactose recovery and purity increased only till an optimum power for the 20 min treatment. In the case of ultrasonic bath, lactose purity increased with an increase in the ultrasonic frequency from 22 kHz to 33 kHz though the lactose recovery marginally decreased. Overall, it was observed that the maximum lactose recovery was ∼98% obtained using ultrasonic horn while the maximum lactose purity was ∼97%. It was also observed that maximum lactose recovery was ∼94% for the case of ultrasonic bath while the maximum lactose purity was ∼92%. The work has enabled to understand the optimized application of ultrasound so as to maximize both the lactose yield and purity during the recovery from whey.  相似文献   

10.
Cationization of cotton fabric was conferred by the sonicator reaction of cellulose with bromoacetyl bromide, followed by substitution of the terminal bromo groups by triethylamine. Experiments showed that the optimal volume of bromoacetyl bromide necessary to succeed the first stage was 0.4 mL. The order of weight gain for various processes indicates, ultrasound, 25 kHz > ultrasound, 40 kHz > mechanical stirring. Also, for the second stage the order of nitrogen contents indicates ultrasound, 25 kHz > ultrasound, 40 kHz > mechanical stirring. The structures of both untreated and cationic fibres were investigated by FTIR spectroscopy. Modified cotton fabric was subsequently dyed in both conventional and ultrasonic techniques with isosalipurposide dye isolated from Acacia cyanophylla yellow flowers. The effect of dye bath pH, ultrasonic power and frequency, dyeing time and temperature were studied and the order of K/S values indicates ultrasound, 25 kHz > ultrasound, 40 kHz > CH. ultrasound was also found to enhance the dye uptake and the overall fastness properties. Analysis of the sorption isotherms of isosalipurposide dye on cationic cotton fabric shows that the Languimir isotherm equation is best able to correlate the data.  相似文献   

11.
This paper describes the ultrasound assisted dispersal of a low wt./vol.% copper nanopowder mixture and determines the optimum conditions for de-agglomeration. A commercially available powder was added to propan-2-ol and dispersed using a magnetic stirrer, a high frequency 850 kHz ultrasonic cell, a standard 40 kHz bath and a 20 kHz ultrasonic probe. The particle size of the powder was characterized using dynamic light scattering (DLS). Z-Average diameters (mean cluster size based on the intensity of scattered light) and intensity, volume and number size distributions were monitored as a function of time and energy input. Low frequency ultrasound was found to be more effective than high frequency ultrasound at de-agglomerating the powder and dispersion with a 20 kHz ultrasonic probe was found to be very effective at breaking apart large agglomerates containing weakly bound clusters of nanoparticles. In general, the breakage of nanoclusters was found to be a factor of ultrasonic intensity, the higher the intensity the greater the de-agglomeration and typically micron sized clusters were reduced to sub 100 nm particles in less than 30 min using optimum conditions. However, there came a point at which the forces generated by ultrasonic cavitation were either insufficient to overcome the cohesive bonds between smaller aggregates or at very high intensities decoupling between the tip and solution occurred. Absorption spectroscopy indicated a copper core structure with a thin oxide shell and the catalytic performance of this dispersion was demonstrated by drop coating onto substrates and subsequent electroless copper metallization. This relatively inexpensive catalytic suspension has the potential to replace precious metal based colloids used in electronics manufacturing.  相似文献   

12.
This study was aimed at removal of 4-dodecylbenzene sulfonate (DBS) ions from aqueous solutions by ultrasound-assisted adsorption onto the carbonized corn cob (AC). The main attention was focused on modeling the equilibrium and kinetics of adsorption of DBS onto the AC. The AC was prepared from ground dried corn cob by carbonization and activation by carbon dioxide at 880 °C for 2 h in a rotary furnace. The adsorption isotherm data were fitted by the Langmuir model in both the absence and the presence of ultrasound (US). The maximum adsorption capacities of the adsorbent for DBS, calculated from the Langmuir isotherms, were 29.41 mg/g and 27.78 mg/g in the presence of US and its absence, respectively. The adsorption process in the absence and the presence of US obeyed the pseudo second-order kinetics. The intraparticular diffusion model indicated that the adsorption of DBS ions on the AC was diffusion controlled as well as that US promoted intraparticular diffusion. The ΔG° values, ?24.03 kJ/mol, ?25.78 kJ/mol and ?27.78 kJ/mol, were negative at all operating temperatures, verifying that the adsorption of DBS ions was spontaneous and thermodynamically favorable. The positive value of ΔS° = 187 J/mol K indicated the increased randomness at the adsorbent–adsorbate interface during the adsorption of DBS ions by the AC.  相似文献   

13.
In this investigation, the application of citric acid was explored for the removal of extracellular polymeric substance (EPS) from waste activated sludge (WAS), followed by ultrasonic pretreatment, which enhanced the subsequent anaerobic biodegradability. EPS was removed with 0.05 g/g SS of citric acid. The chemical oxygen demand (COD) solubilization and suspended solids (SS) reduction that occurred for specific energy input of 171.9 kJ/kg TS, in deflocculated (EPS removed and ultrasonically pretreated) sludges were found to be 22.70% and 20.28% and was comparatively higher, than the flocculated (with EPS and ultrasonically pretreated). The biogas yield potential of flocculated and deflocculated sludges (specific energy input – 171.9 kJ/kg TS) was found to be 0.212 L/(g VS) and 0.435 L/(g VS), respectively. Accordingly, the deflocculation and ultrasonic pretreatment improved the anaerobic biodegradability efficiently. Thus, this chemo mediated sonic pretreatment is an effective method for enhancing biodegradability and improving clean energy generation from WAS.  相似文献   

14.
In this study, treatment of an antibiotic compound amoxicillin by medium-high frequency ultrasonic irradiation and/or ozonation has been studied. Ultrasonic irradiation process was carried out in a batch reactor for aqueous amoxicillin solutions at three different frequencies (575, 861 and 1141 kHz). The applied ultrasonic power was 75 W and the diffused power was calculated as 14.6 W/L. The highest removal was achieved at 575 kHz ultrasonic frequency (>99%) with the highest pseudo first order reaction rate constant 0.04 min−1 at pH 10 but the mineralization achieved was around 10%. Presence of alkalinity and humic acid species had negative effect on the removal efficiency (50% decrease). To improve the poor outcomes, ozonation had been applied with or without ultrasound. Ozone removed the amoxicillin at a rate 50 times faster than ultrasound. Moreover, due to the synergistic effect, coupling of ozone and ultrasound gave rise to rate constant of 2.5 min−1 (625 times higher than ultrasound). In the processes where ozone was used, humic acid did not show any significant effect because the rate constant was so high that ozone has easily overcome the scavenging effects of natural water constituents. Furthermore, the intermediate compounds, after the incomplete oxidation mechanisms, has been analyzed to reveal the possible degradation pathways of amoxicillin through ultrasonic irradiation and ozonation applications. The outcomes of the intermediate compounds experiments and the toxicity was investigated to give a clear explanation about the safety of the resulting solution. The relevance of all the results concluded that hybrid advanced oxidation system was the best option for amoxicillin removal.  相似文献   

15.
The present paper focused on the ultrasonic assisted simultaneous removal of fast green (FG), eosin Y (EY) and quinine yellow (QY) from aqueous media following using MOF-5 as a metal organic framework and activated carbon hybrid (AC-MOF-5). The structure and morphology of AC-MOF-5 was identified by SEM, FTIR and XRD analysis. The interactive and main effects of variables such as pH, initial dyes concentration (mg L−1), adsorbent dosage (mg) and sonication time (min) on removal percentage were studied by central composite design (CCD), subsequent desirability function (DF) permit to achieved real variable experimental condition. Optimized values were found 7.06, 5.68, 7.59 and 5.04 mg L−1, 0.02 g and 2.55 min for pH, FG, EY and QY concentration, adsorbent dosage and sonication time, respectively. Under this conditions removal percentage were obtained 98.1%, 98.1% and 91.91% for FG, EY and QY, respectively. Two models, namely partial least squares (PLS) and multi-layer artificial neural network (ANN) model were used for building up to construct an empirical model to predict the dyes under study removal behavior. The obtained results show that ANN and PLS model is a powerful tool for prediction of under-study dyes adsorption by AC-MOF-5. The evaluation and estimation of equilibrium data from traditional isotherm models display that the Langmuir model indicated the best fit to the equilibrium data with maximum adsorption capacity of 21.230, 20.242 and 18.621 mg g−1, for FG, EY and QY, respectively, while the adsorption rate efficiently follows the pseudo-second-order model.  相似文献   

16.
Curcumin, a dietary phytochemical, has been extracted from rhizomes of Curcuma amada using ultrasound assisted extraction (UAE) and the results compared with the conventional extraction approach to establish the process intensification benefits. The effect of operating parameters such as type of solvent, extraction time, extraction temperature, solid to solvent ratio, particle size and ultrasonic power on the extraction yield have been investigated in details for the approach UAE. The maximum extraction yield as 72% was obtained in 1 h under optimized conditions of 35 °C temperature, solid to solvent ratio of 1:25, particle size of 0.09 mm, ultrasonic power of 250 W and ultrasound frequency of 22 kHz with ethanol as the solvent. The obtained yield was significantly higher as compared to the batch extraction where only about 62% yield was achieved in 8 h of treatment. Peleg’s model was used to describe the kinetics of UAE and the model showed a good agreement with the experimental results. Overall, ultrasound has been established to be a green process for extraction of curcumin with benefits of reduction in time as compared to batch extraction and the operating temperature as compared to Soxhlet extraction.  相似文献   

17.
An efficient intermittent ultrasonic treatment strategy was developed to improve laccase production from Trametes versicolor mycelia cultures. The optimized strategy consisted of exposing 2-day-old mycelia cultures to 5-min ultrasonic treatments for two times with a 12-h interval at the fixed ultrasonic power and frequency (120 W, 40 kHz). After 5 days of culture, this strategy produced the highest extracellular laccase activity of 588.9 U/L among all treatments tested which was 1.8-fold greater than the control without ultrasound treatment. The ultrasonic treatment resulted in a higher pellet porosity that facilitated the mass transfer of nutrients and metabolites from the pellets to the surrounding liquid. Furthermore, the ultrasonic treatment induced the expression of the laccase gene (lcc), which correlated with a sharp increase in both extracellular and intracellular laccase activity. This is the first study to find positive effects of ultrasound on gene expression in fungal cells. These results provide a basis for understanding the stimulation of metabolite production and process intensification by ultrasonic treatment in filamentous fungal culture.  相似文献   

18.
Magnetic γ-Fe2O3 nanoparticles modificated by bis(5-bromosalicylidene)-1,3-propandiamine (M-γ-Fe2O3-NPs-BBSPN) and characterized by field emission scanning electron microscopy (FE-SEM), Fourier transforms infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). This modified compound as novel adsorbent was applied for the ultrasound-assisted removal of Pb2+ ion in combination with flame atomic absorption spectroscopy (FAAS). The influences of the effective parameters including initial Pb2+ ion concentration, pH, adsorbent mass and ultrasound time were optimized by central composite design (CCD). Maximum removal percentage of Pb2+ ion which obtained at 25 mg L1 of Pb2+, 25 mg of adsorbent and 4 min mixing with sonication at pH 6.0. The precision of the equation obtained by CCD was confirmed by the analysis of variance and calculation of correlation coefficient relating the predicted and the experimental values of removal percentage of Pb2+ ion. The kinetic and isotherm of ultrasound-assisted removal of Pb2+ ion was well described by second-order kinetic and Langmuir isotherm model with maximum adsorption capacity of 163.57 mg g1.  相似文献   

19.
MgO nanosheets with high adsorption performance were fabricated by an ultrasonic method. It was revealed that, nest-like MgO was formed from the magnesium salt solution precipitation and further calcination. Then the nest-like MgO was exfoliated by ultrasonic waves to obtain MgO nanosheets with approximately a lateral of 200–600 nm and a thickness of 10 nm. Adjusting the ultrasonic time and power, the specific surface areas of MgO nanosheets could be tuned in a range of 79–168 m2/g. The synthesized MgO nanosheets were used as adsorbents to remove boron from aqueous solution, and the maximum boron adsorption capacity of these MgO nanosheets reached 87 mg g−1. The high uptake capability of the MgO nanosheets makes it potentially adsorbent for the removal of boron from wastewaters.  相似文献   

20.
In the present work, kinetics of synthesis of 1,3-bis(allyloxy)benzene was successfully carried out by O-allylation of resorcinol with allyl bromide using aqueous potassium hydroxide and catalyzed by a new multi-site phase-transfer catalyst viz., 1,3,5,7-tetrabenzylhexamethylenetetraammonium tetrachloride, MPTC under ultrasonic (40 kHz, 300 W) assisted organic solvent condition. The pseudo first-order kinetic equation was applied to describe the overall reaction. Under ultrasound irradiation (40 kHz, 300 W) in a batch reactor, it shows that the overall reaction rate can be greatly enhanced to seven fold faster with ultrasound irradiation than without ultrasound. The present study provides a method to synthesize ethers by ultrasound assisted liquid–liquid phase-transfer catalysis condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号