首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fire accidents that carry huge loss with them have increased in the previous two decades than at any time in the history. Hence, there is a need for understanding the safety distances from different fires with different fuels. Fire safety distances are computed for different open pool fires. Diesel, gasoline and hexane are used as fuels for circular pool diameters of 0.5 m, 0.7 m and 1.0 m. A large square pool fire of 4 m × 4 m is also conducted with diesel as a fuel. All the prescribed distances in this study are purely based on the thermal analysis. IR camera is used to get the thermal images of pool fires and there by the irradiance at different locations is computed. The computed irradiance is presented with the threshold heat flux limits for human beings.  相似文献   

2.
This work presents a photogrammetric technique that provides geometric and thermal information about building façades. It uses low cost and portable scale bars, specially designed for thermal imaging, and processing software based on single image rectification. Image rectification corrects the original photo displacement due to the projection and perspective, and radial distortions introduced by the lens of the camera.The technique is tested by comparing laser scanning and thermal data. Seven segments of different orientation and length are selected for the measurement. Accuracy tests show errors between 44 mm and 151 mm. Precision values range between 22 mm and 61 mm for a maximum length of 7259 mm. The accuracy and precision results obtained for the technique open the possibility of extending its use to building inspection tasks.  相似文献   

3.
There are few effective methods to detect or prevent the extravasation of injected materials such as chemotherapeutic agents and radiographic contrast materials. To investigate whether a thermographic camera could visualize the superficial vein and extravasation using the temperature gradient produced by the injected materials, an infrared thermographic camera with a high resolution of 0.04 °C was used. At the room temperature of 26 °C, thermal images and the time course of the temperature changes of a paraffin phantom embedded with rubber tubes (diameter 3.2 mm, wall thickness 0.8 mm) were evaluated after the tubes were filled with water at 15 °C or 25 °C. The rubber tubes were embedded at depths of 0 mm, 1.5 mm, and 3.0 mm from the surface of the phantom. Temperature changes were visualized in the areas of the phantom where the tubes were embedded. In general, changes were more clearly detected when greater temperature differences between the phantom and the water and shallower tube locations were employed. The temperature changes of the surface of a volunteer’s arm were also examined after a bolus injection of physiological saline into the dorsal hand vein or the subcutaneous space. The injection of 5 ml room-temperature (26 °C) saline into the dorsal hand vein enabled the visualization of the vein. When 3 ml of room-temperature saline was injected through the vein into the subcutaneous space, extravasation was detected without any visualization of the vein. The subtraction image before and after the injection clearly showed the temperature changes induced by the saline. Thermography may thus be useful as a monitoring system to detect extravasation of the injected materials.  相似文献   

4.
Temperature history and distribution of steel workpiece (X20Cr13) was measured by a high tech infrared camera under ultrasonic assisted dry creep feed up grinding. For this purpose, a special experimental setup was designed and fabricated to vibrate only workpiece along two directions by a high power ultrasonic transducer. In this study, ultrasonic effects with respect to grinding parameters including depth of cut (ae), feed speed (vw), and cutting speed (vs) has been investigated. The results indicate that the ultrasonic vibration has considerable effect on reduction of temperature, depth of thermal damage of workpiece and width of temperature contours. Maximum temperature reduction of 25.91% was reported at condition of vs = 15 m/s, vw = 500 mm/min, ae = 0.4 mm in the presence of ultrasonic vibration.  相似文献   

5.
An analysis of the intense blue upconversion emission at 476 and 488 nm in Tm3 +/Yb3 + codoped Y2O3 under excitation power density of 86.7 W/cm2 available from a diode laser emitting at 976 nm, has been undertaken. Fluorescence intensity ratio (FIR) variation of temperature-sensitive blue upconversion emission at 476 and 488 nm in this material was recorded in the temperature range from 303 to 753 K. The maximum sensitivity derived from the FIR technique of the blue upconversion emission is approximately 0.0035 K? 1. The results imply that Tm3 +/Yb3 + codoped Y2O3 is a potential candidate for the optical temperature sensor.  相似文献   

6.
This work reports the observation of emissions at 2.9 μm, 1.8 μm and 1.47 μm from Dy3+/Tm3+ codoped fluorophosphate glass upon excitation of a conventional 800 nm laser diode. Judd–Ofelt intensity parameters and radiative properties of Dy3+ ions in present glasses were calculated using the Judd–Ofelt theory. The mechanism and microparameters of energy transfer processes were investigated based on photoluminescence performance and lifetime measurements. The Dy3+/Tm3+ codoped fluorophosphate glass possessing advantageous spectroscopic characteristics as well as excellent thermal stability is a promising candidate for an efficient 2.9 μm laser.  相似文献   

7.
The dependences of the incident angle and thermal durability of a tungsten silicide (WSi) wire-grid polarizer were examined. A WSi grating with a 0.5 fill factor, 260 nm depth, and 400 nm period was formed on a Si surface using two-beam interference and dry etching. The TM transmission spectrum of the fabricated element was greater than 60% at the incident angle of θ = 40° (the angle between the incident direction and the perpendicular axis to the grating direction) in the 4–10 μm wavelength range. An extinction ratio of 22.2 dB was achieved at 2.5 μm wavelength. Additionally, results show that this polarizer has higher thermal resistance than that of commercial infrared polarizers. Therefore, this polarizer is effective for taking a polarized thermal image of high temperatures.  相似文献   

8.
The application of power ultrasound (PuS) could be used as a novel technology with which to intensify thermal treatments using hot air. Mild thermal treatments have been applied to improve the soft texture of dry-cured ham caused by defective processing. In this regard, the aim of this study was to assess the kinetic intensification linked to the application of airborne PuS in the mild thermal treatment using hot air of dry-cured ham. For this purpose, vacuum packed cylindrical samples (2.52 ± 0.11 cm in diameter and 1.90 ± 0.14 cm in height) of dry-cured ham were heated using hot air at different temperatures (40, 45, 50 °C) and air velocities (1, 2, 3, 4, 6 m/s) with (22.3 kHz, 50 W) and without PuS application. Heat transfer was analyzed by considering that it was entirely controlled by conduction and the apparent thermal diffusivity was identified by fitting the model to the heating kinetics. The obtained results revealed that PuS application sped up the heat transfer, showing an increase in the apparent thermal diffusivity (up to 37%). The improvement in the apparent thermal diffusivity produced by PuS application was greater at high temperatures (50 °C) but negligible at high air velocities (6 m/s). Heating caused an increase in the hardness and elasticity of dry-cured ham, which would correct ham pastiness defects, while the influence of PuS on such textural parameters was negligible.  相似文献   

9.
In this paper, a mid-/long-wave dual-band detector which combined PπMN structure and unipolar barrier was developed based on type-II InAs/GaSb superlattice. A relevant 320 × 256 focal plane array (FPA) was fabricated. Unipolar barrier and PπMN structure in our dual band detector structure were used to suppress cross-talk and dark current, respectively. The two channels, with respective 50% cut-off wavelength at 4.5 μm and 10 μm were obtained. The peak quantum efficiency (QE) of mid wavelength infrared (MWIR) band and long wavelength infrared (LWIR) band are 53% at 3.2 μm under no bias voltage and 40% at 6.4 μm under bias voltage of −170 mV, respectively. And the dark current density under 0 and −170 mV of applied bias are 1.076 × 10−5 A/cm2 and 2.16 × 10−4 A/cm2. The specific detectivity of MWIR band and LWIR band are 2.15 × 1012 cm·Hz1/2/W at 3.2 μm and 2.31 × 1010 cm·Hz1/2/W at 6.4 μm, respectively, at 77 K. The specific detectivity of LWIR band maintains above 1010 cm·Hz1/2/W at the wavelength range from 4.3 μm to 10.2 μm under −170 mV. The cross-talk, selectivity parameter at 3.0 μm, about 0.14 was achieved under bias of −170 mV. Finally, the thermal images were taken by the fabricated FPA at 77 K.  相似文献   

10.
A detailed investigation on thermal and spectroscopic properties of different Ho3+/Yb3+ concentration ratios in silica-germanate glasses is displayed. According to the measurement of thermal properties, the host glass possesses high transition temperature (585 °C) as well as the large ΔT(155 °C). The 2.0 μm fluorescence can be obtained from all the samples. Maximum stimulated emission cross-section of around 2.0 μm is 0.56 × 10−20 cm2 of Ho3+ as calculated by McCumber theory. Besides, the underlying mechanism is analyzed by means of fluorescence spectra. Thus, desirable thermal properties and spectroscopic characteristics of Ho3+/Yb3+ co-doped silica-germanate glass is a promising material in 2.0 μm emission.  相似文献   

11.
The aim of the present study was to define if the athletes may vary their warm-up according to the specific demands of event they are preparing for and that higher-level athletes may differ in their thermal responses than lower-level athletes. Ten top level Polish male decathletes (19.9 ± 3.0 yr, 187.9 ± 4.7 cm, 82.7 ± 6.7 kg) who participated in the study were examined with a thermographic camera. Thermal imaging of each athlete was undertaken three times: at rest before the warm-up began, immediately after the general warm-up, and immediately after the specific warm-up.As significant changes in skin surface temperatures were observed between rest and both general and specific warm-ups (p < 0.001) it seems that athletes are able to vary their warm-up according to the decathlon event. Moving from rest to the general warm-up was characterized by decrease of the body surface temperature within the decathletes as a cohort. Interestingly, correlation was found between decathlon result measured by points and decrease of temperatures after commencing the general or specific warm-up exercises (r = 0.62; p < 0.05). However, the higher-performing competitors were characterized by a higher variability of skin temperatures depending on the event being prepared for.The present findings suggest that in sporting competitions characterized by the need for specificity of warm-up of different muscular segments, thermal imaging can be useful observe thermoregulatory responses. Due to these observed individual thermal reactions to the physical effort of warm-up, the present findings suggest it is possible to individually adapt the warm-up to the needs of both the event being prepared for and the level of athlete.  相似文献   

12.
We report two approaches using Quantum Well Infrared Photodetectors for detection in the [3–4.2 μm] atmospheric window. Taking advantage of the large band gap discontinuity we demonstrated a strained AlInAs/InGaAs heterostructure on InP. The optical coupling in this structure has been experimentally and numerically investigated. The results show that the coupling is mainly due to guided modes. The second approach is based on double barrier strained AlGaAs/AlAs/GaAs/InGaAs active layers on GaAs. The segregation of the elements III in these structures has been investigated using a transmission electron microscope. The results show a strong modification of the conduction band profile. We demonstrate peak wavelengths at 3.9 μm for the InP based detector and 4.0 μm for the GaAs based detector. We report a background limited peak detectivity (2π field of view, 300 K background) at 4.0 μm of about 2 × 1011 cm Hz1/2 W?1 at 77 K, and 1.5 × 1011 cm Hz1/2 W?1 at 100 K.  相似文献   

13.
Quantum Well Infrared Photodetector (QWIP) usually suffer from a too moderate quantum efficiency and too large dark current which is often announced as crippling for low flux applications. Despite this reputation we demonstrate the ability of QWIP for the low infrared photon flux detection. We present the characterization of a state of the art 14.5 μm QWIP from Alcatel-Thales III–V Lab. We developed a predictive model of the performance of an infrared instrument for a given application. The considered scene is a cryogenic wind tunnel (ETW), where a specific Si:Ga camera is currently used. Using this simulation tool we demonstrate the QWIP ability to image a low temperature scene in this scenario. QWIP detector is able to operate at 30 K with a NETD as low as 130 mK. In comparison to the current detector, the operating temperature is 20 K higher. The use of a QWIP based camera would allow a huge simplification of the optical part.  相似文献   

14.
In this paper, the design and structure of a vacuum variable-temperature blackbody system were described, and the steady-state thermal analysis of a 3-D blackbody model was presented. Also, the thermal performance of the blackbody was evaluated using an infrared camera system. The blackbody system was constructed to operate under vacuum conditions (2.67 × 10−2 Pa) to reduce its temperature uncertainty, which can be caused by vapor condensation at low temperatures usually below 273.15 K. A heat sink and heat shield including a cold shield were embedded around the radiator to maintain the heat balance of the blackbody. A simplified 3-D model of the blackbody including a radiator, heat sink, heat shield, cold shield, and heat source was thermophysically evaluated by performing finite elements analysis using the extended Stefan–Boltzmann’s rule, and the infrared radiating performance of the developed system was analyzed using an infrared camera system. On the basis of the results of measurements and simulations, we expect that the suggested blackbody system can serve as a highly stable reference source for the calibration and measurement of infrared optical systems within operational temperature ranges.  相似文献   

15.
In our effort to systematically study the far infrared (FIR) spectra of asymmetrically mono deuterated methanol (CH2DOH) and thereby obtain the transition wavenumbers with better and better accuracy (Mukhopadhyay, 2016a,b), the complete Fourier transform (FT) spectra from FIR to infrared (IR) vibrational bands (in the range 50–1190 cm−1) have been re-recorded using the Synchrotron Radiation Source at the Canadian Light Sources in Saskatchewan, Canada. The resolution of the spectrum is unprecedented, reaching beyond the Doppler limited resolution as low as about 0.0008 cm−1 with a signal to noise (S/N) ratio is many fold better than that can be obtained by commercially available FT spectrometer using thermal sources (e.g., Globar). Spectra were also recorded beyond 1190 cm−1 to about 5000 cm−1 at a somewhat lower resolution of 0.002–0.004 cm−1. In this report the analysis of the b-type and c-type torsional - rotational spectra in the ground vibrational state corresponding to gauche- (e1/o1) to gauche- (e1/o1) and gauche- (e1/o1) to trans- (e0) states in the ground vibrational state are reported and an atlas of the wavenumber for about 2500 FIR assigned absorption lines has been prepared. The transitions within a given sub-band are analyzed using state dependent expansion parameters and the Q-branch origins. The data from previous results (Mukhopadhyay, 2016a,b) along with the present work allowed a global analysis yielding a complete set of molecular parameters. The state dependent molecular parameters reproduce the experimental wavenumbers within experimental uncertainty. In addition, the sensitivity of the spectrum allowed observation of forbidden transitions previously unobserved and helped reassignment of rotational angular momentum quantum numbers of some ΔK = ±1, Q-branch transitions in highly excited states recently reported in the literature. To our knowledge the wavenumbers reported in the present work are the most accurate so far reported in the literature and represent the highest resolution spectra for this molecular species.  相似文献   

16.
We present a high-power 1.53 μm laser based on intracavity KTA-OPO driven by diode-end-pumped acousto-optical Q-switched YVO4/Nd:YVO4 composite. The composite crystal was utilized for reducing the thermal effect, and the mode mismatch compensating OPO cavity was designed for efficient OPO conversion. The output power of eye-safe laser at 1535 nm was up to 4.4 W with the pump power of 27 W, corresponding to a diode-to-signal conversion efficiency of 16.3%. To our knowledge, this is the highest output power in diode-end-pumped circumstances. In the experiment, the strong yellow light generated by Raman conversion and frequency doubling in the KTA crystal was observed.  相似文献   

17.
A mid-infrared carbon monoxide (CO) sensor system based on a dual-channel differential detection method was developed using a broadband light source in the 4.60 µm wavelength region and a single-reflection spherical optical chamber with ∼0.373 m absorption path length. CO detection was realized by targeting the wideband strong absorption lines within 4.55–4.65 µm. A dual-channel pyroelectric detector as well as a self-developed digital signal processor (DSP) based orthogonal lock-in amplifier was employed to process CO sensing signal. A minimum detection limit of ∼0.5 ppm in volume (ppmv) was achieved with a measurement time of 6 s, based on an Allan deviation analysis of the sensor system. The response time (1000  0 ppmv) was determined to be ∼7 s for the CO sensor operation. Due to the characteristics of low detection limit, fast response time and high cost performance, the proposed sensor has relatively good prospect in coal-mining operation.  相似文献   

18.
The fabrication method and the pyroelectric response of a single element infrared sensor based lead zirconate titanate (PZT) particles and polyvinylidene fluoride P(VDF-TrFE) copolymer composite thick film is reported in this paper. A special thermal insulation structure, including polyimide (PI) thermal insulation layer and thermal insulation tanks, was used in this device. The thermal insulation tanks were fabricated by laser micro-etching technique. Voltage responsivity (RV), noise voltage (Vnoise), noise equivalent power (NEP), and detectivity (D*) of the PZT/P(VDF-TrFE) based infrared sensor are 1.2 × 103 V/W, 1.25 × 106 V Hz1/2, 1.1 × 10−9 W and 1.9 × 108 cm Hz1/2 W−1 at 137.3 Hz modulation frequency, respectively. The thermal time constant of the infrared sensor τT was about 15 ms. The results demonstrate that the composite infrared sensor show a high detectivity at high chopper frequency, which is an essential advantage in infrared detectors and some other devices.  相似文献   

19.
Infrared fluorescence, energy transfer process, thermal stability and quantitative analysis of Tm3+ doped novel niobium silicate-germanate glasses have been investigated. The thermal stability changes indicate that the introduction of La2O3 to substitute for Nb2O5 can improve the anti-crystallization of present glass system. Intense 1.8 μm fluorescence has been achieved and the value of emission cross section can reach as high as 12.2 × 10−21 cm2. Besides, the microparameters of energy transfer were analyzed by the extended overlap integral method. Hence, the results indicate that the excellent spectroscopic characteristics of this kind of silicate-germanate glass together with the good thermal properties may become a promising matrix applied for 1.8 μm band near-infrared laser.  相似文献   

20.
《Optik》2013,124(16):2373-2375
We demonstrate a new device concept for wavelength division demultiplexing based on planar photonic crystal waveguides. The filtering of wavelength channels is realized by shifting the cutoff frequency of the fundamental photonic bandgap mode in consecutive sections of the waveguide. The shift is realized by modifying the size of the border holes.The proposed demultiplexer has an area equal to (16.5 μm × 6.5 μm) and thus it is verified that this structure is very small and can be integrated easily into optical integrated circuits with nanophotonic technologies. The output wavelengths of designed structure can be tuned for communication applications, around 1550 nm. The wavelengths of demultiplexer channels are λ1 = 1.590 μm, λ2 = 1.566 μm, λ3 = 1.525 μm, λ4 = 1.510 μm, λ5 = 1.484 μm, λ6 = 1.450 μm, λ7 = 1.400 μm respectively. Designs offering improvement of number of the separate wavelengths (seven), miniaturization of the structure (107.25 μm2) is our aim in this work.In our structure, we consider that the 2D triangular lattice photonic crystal is composed of air holes surrounded by dielectric. Its parameters are: radius of holes (r = 0.130 μm), lattice constant (a = 0.380 μm), and index of membrane (n = 3.181:InP). The numerical model used to simulate the structure of the demultiplexer is based on the finite difference time domain (FDTD).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号