首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel microfluidic driver via AC electrokinetics   总被引:1,自引:0,他引:1  
Kuo CT  Liu CH 《Lab on a chip》2008,8(5):725-733
A novel ac electrokinetic microfluidic driver based on alternating current electro-osmosis flow induced by asymmetrically capacitance/chemistry-modulated microelectrode arrays has been successfully developed and demonstrated. Asymmetric capacitance modulation (ACM) is made of comb electrode arrays and parts of individual electrode surfaces are modulated/deposited with a SiO(2) dielectric layer. This proposed design can be utilized to shift the optimal operation frequency of maximum velocity to a higher frequency to minimize electrolytic bubble generation and enhance micropumping performance. The pumping velocity, described in this paper, is measured via the tracing of microbeads and is a function of applied potential, signal frequency, buffer concentration, and dielectric layer thickness. A maximum pumping velocity up to 290 microm s(-1) in 5 mM buffer solution with the applied potential of 10 Vpp is observed in our prototype device, and the estimated maximum flow rate is up to 26.1 microl h(-1). This is the first successful demonstration regarding bubble-free ac electrokinetic micropumping via such asymmetrically capacitance-modulated electrode arrays. Design, simulation, microfabrication, experimental result, and theoretical model are described in this paper to characterize and exhibit the performance of the proposed novel bubble-free ac electrokinetic microfluidic driver.  相似文献   

2.
AC electrokinetics is a generic term that refers to an induced motion of particles and fluids under nonuniform AC electric fields. The AC electric fields are formed by application of AC voltages to microelectrodes, which can be easily integrated into microfluidic devices by standard microfabrication techniques. Moreover, the magnitude of the motion is large enough to control the mass transfer on the devices. These advantages are attractive for biomolecular analysis on the microfluidic devices, in which the characteristics of small space and microfluidics have been mainly employed. In this review, I describe recent applications of AC electrokinetics in biomolecular analysis on microfluidic devices. The applications include fluid pumping and mixing by AC electrokinetic flow, and manipulation of biomolecules such as DNA and proteins by various AC electrokinetic techniques. Future prospects for highly functional biomolecular analysis on microfluidic devices with the aid of AC electrokinetics are also discussed.  相似文献   

3.
A numerical algorithm is presented for the standard model of macroion electrokinetics and certain generalizations of it. The macroion consists of a cylindrical section with identical, hemispheroidal endcaps, each piece having arbitrary length. The system of one macroion and adjoining salt solution is subjected to an arbitrary sequence of pulsed electrical fields and pulsed translational and rotational velocities. Numerical solutions are obtained for the time dependent electrostatic and mobile ion concentration fields and the solvent velocity. From these fields the dielectric response, force, and torque are calculated. Generalizations of the standard model include the diffusive motion of macroion surface charges, partial slip of solvent motion at the macroion surface, and a simple model for the reactive exchange of surface charge with solution ions. The primary illustrative application is to recent measurements of electric birefringence versus applied field frequency for poly-(tetrafluorothylene) colloidal particles, but a few results are presented for the dielectric response of DNA fragments and of spherical colloidal particles. The source code and additional details are provided as supplementary documentation.  相似文献   

4.
Lithium-sulfur (Li-S) batteries and lithium-selenium (Li-Se) batteries,as environmental protection energy storage systems with outstanding theoretical specific ...  相似文献   

5.
This review covers the development of measurement configurations for chemiresistors based on conducting polymers. The simplest chemiresistors are based on application of a two-electrode technique. Artifacts caused by contact resistance can be overcome by application of a four-electrode technique. Simultaneous application of the two- and four-electrode measurement configurations provides an internal control of sensor integrity. An incorporation of two additional electrodes controlling the redox state of chemosensitive polymers and connecting to the measurement electrodes through liquid or (quasi)solid electrolyte results in a six-electrode technique; an electrically driven regeneration of such sensors allows one to perform fast and completely reversible measurements.  相似文献   

6.
We have investigated induced-charge electroosmotic flow in a fixed bed of ion-permselective glass beads by quantitative confocal laser scanning microscopy. Externally applied electrical fields induce concentration polarization (CP) in the porous medium due to coupled mass and charge transport normal to the charge-selective interfaces. These data reveal the generation of a nonequilibrium electrical double layer in the depleted CP zones and the adjoining anodic hemispheres of the (cation-selective) glass beads above a critical field strength. This initiates CP-based induced-charge electroosmosis along curved interfaces of the quasi-electroneutral macropore space between glass beads. Caused by mutual interference of resulting nonlinear flow with (flow-inducing) space charge regions, an electrohydrodynamic instability can appear locally and realize turbulent flow behavior at low Reynolds numbers. It is characterized by a local destruction of the CP zones and concomitant removal of diffusion-limited mass transfer. More efficient pore-scale lateral mixing also improves macroscopic transport, which is reflected in the significantly reduced axial dispersion of a passive tracer.  相似文献   

7.
This paper examines the consequences of the occurrence of conduction processes in the stagnant fluid layer between the surface of a colloidal particle and the shear plane when it is undergoing an electrokinetic process. It is shown that the most widely used model system for studying electrokinetics (viz. monodisperse polystyrene sulfate latex) displays significantly different behaviour in different experiments depending on the details of the post-polymerisation clean-up procedure. Nonetheless, the results provide important insights into how electrokinetic results should be interpreted. A procedure is suggested which should allow a more realistic evaluation of the diffuse double layer potential from electrokinetic results without the need for extensive conduction studies.  相似文献   

8.
This review of the current status of conducting polymers will focus on recent progress which demonstrates that the initial promise of the late 1970's has become reality. Conducting polymers are now available as materials with truly unique properties: They combine the important electronic and optical properties of semiconductors and metals with the attractive mechanical properties and processing advantages of polymers. Conducting polymer blends based upon polyaniline (PANI) are a new class of materials in which the threshold for the onset of electrical conductivity (σ) can be reduced to volume fractions below 1%, well below that required for classical percolation (16% by volume for globular conducting objects dispersed in an insulating matrix in three dimensions). The origin of this remarkably low threshold for the onset of electrical conductivity is the self-assembled network morphology of the PANI polyblends which forms during the course of liquid-liquid separation. Since the average density of the conducting network near threshold is small, the conductivity increases smoothly and continuously over many orders of magnitude as the concentration of conducting polymer increases above threshold. The low percolation threshold and the continuous increase of σ(f) above threshold are particularly important; as a result of this combination, conducting polyblends can be reproducibly fabricated with controlled levels of electrical conductivity while retaining the desired mechanical properties of the matrix polymer.1-3)  相似文献   

9.
This review (with 144 refs.) focuses on the recent advances in the preparation and application of magnetic micro/nanoparticles. Specifically, it covers (a) methods for preparation (such as by coprecipitation, pyrolysis, hydrothermal, solvothermal, sol-gel, micro-emulsion, sonochemical, medium dispersing or emulsion polymerization methods), and (b) applications such as magnetic resonance imaging, magnetic separation of biomolecules (nucleic acids; proteins; cells), separation of metal ions and organic analytes, immobilization of enzymes, biological detection, magnetic catalysis and water treatment. Finally, the existing challenges and possible trends in the field are addressed.
Graphical abstract This review focuses on the recent advances in the preparation and application of magnetic micro/nano particles. Finally, the existed problems and possible trends in the field were discussed. a: Fe3O4@SiO2-PVAm: polyvinyl amine-coated Fe3O4@SiO2 b: CTS/MMT-Fe3O4 microsphere: chitosan/montmorillonite-Fe3O4 microsphere c: MTAMs: magnetic targeted antibiotic microspheres d: SM: the code of iron oxide-silica composite microspheres e: PSt: poly styrene f: gamma-PGA- PLA: poly(gamma-glutamic acid) and poly(lactide) g: poly(-MMA–DVB–GMA) microspheres: poly(methylmethacrylate–divinylbenzene–glycidylmethacrylate) microspheres h: AEAPS: N-(2-aminoethyl)-3-aminopropyltrimethoxysilane
  相似文献   

10.
The effect of chemical composition of diaspores on their electrokinetics was studied. Increasing SiO(2) content in a diaspore sample was found to decrease its isoelectric point. The X-ray diffraction and SEM microanalysis showed the absence of distinct SiO(2) phases. A linear correlation was found to exist between the measured isoelectric point and alumina to silica mass ratio in diaspore samples. The linear regression analysis of the experimental data suggests a more significant impact of silicon content than aluminum content, indicating a preferential adsorption of dissolved silicon on diaspore samples and/or preferential dissolution of aluminum from diaspore samples.  相似文献   

11.
The electrokinetic potential of melamine-formaldehyde latex at high ionic strengths was measured by means of two different instruments. The present study confirms that the zeta potentials in 1 M 1-1 electrolyte solutions can be as high as +/-20 mV. The IEP of latex at low ionic strengths was at pH 11. The increase in the electrolyte concentration induced a shift in the IEP to low pH for all studied salts, and this indicates specific adsorption of the anions. The magnitude of the shift depends chiefly on the nature of the anion and increases in the series Cl < NO(3) = Br < I, and the nature of the cation (Li, Na, K, Cs) plays a rather insignificant role.  相似文献   

12.
13.
A lab-on-a-chip device is described for continuous sorting of fluorescent polystyrene microparticles utilizing direct current insulating dielectrophoresis (DC-iDEP) at lower voltages than previously reported. Particles were sorted by combining electrokinetics and dielectrophoresis in a 250 μm wide PDMS microchannel containing a rectangular insulating obstacle and four outlet channels. The DC-iDEP particle flow behaviors were investigated with 3.18, 6.20 and 10 μm fluorescent polystyrene particles which experience negative DEP forces depending on particle size, DC electric field magnitude and medium conductivity. Due to negative DEP effects, particles are deflected into different outlet streams as they pass the region of high electric field density around the obstacle. Particles suspended in dextrose added phosphate buffer saline (PBS) at conductivities ranging from 0.50 to 8.50 mS/cm at pH 7.0 were compared at 6.85 and 17.1 V/cm. Simulations of electrokinetic and dielectrophoretic forces were conducted with COMSOL Multiphysics® to predict particle pathlines. Experimental and simulation results show the effect of medium and voltage operating conditions on particle sorting. Further, smaller particles experience smaller iDEP forces and are more susceptible to competing nonlinear electrostatic effects, whereas larger particles experience greater iDEP forces and prefer channels 1 and 2. This work demonstrates that 6.20 and 10 μm particles can be independently sorted into specific outlet streams by tuning medium conductivity even at low operating voltages. This work is an essential step forward in employing DC-iDEP for multiparticle sorting in a continuous flow, multiple outlet lab-on-a-chip device.  相似文献   

14.
Hydrodynamic behavior at the vicinity of a confining wall is closely related to the friction properties of the liquid/solid interface. Here we consider, using molecular dynamics simulations, the electric contribution to friction for charged surfaces, and the induced modification of the hydrodynamic boundary condition at the confining boundary. The consequences of liquid slippage for electrokinetic phenomena, through the coupling between hydrodynamics and electrostatics within the electric double layer, are explored. Strong amplification of electro-osmotic effects is revealed, and the nontrivial effect of surface charge is discussed. This work allows us to reconsider existing experimental data, concerning zeta potentials of hydrophobic surfaces and suggests the possibility to generate "giant" electro-osmotic and electrophoretic effects, with direct applications in microfluidics.  相似文献   

15.
Electroosmosis on nonuniformly charged surfaces often gives rise to intriguing flow behaviors, which can be utilized in applications such as mixing processes and designing micromotors. Here, we demonstrate nonuniform electroosmosis induced by electrochemical reactions. Water electrolysis creates pH gradients near the electrodes that cause a spatiotemporal change in the wall zeta potential, leading to nonuniform electroosmosis. Such nonuniform EOFs induce multiple vortices, which promote the continuous accumulation of particles that subsequently form a colloidal band. The band develops vertically into a “wall” of particles that spans from the bottom to the top surface of the chamber. Such a flow-driven colloidal band can be potentially used in colloidal self-assembly and separation processes irrespective of the particle surface properties. For instance, we demonstrate these vortices can promote rapid segregation of soft colloids such as oil droplets and fat globules.  相似文献   

16.
To verify the existence of a gel layer at the surface of silica, dependences of the electrophoretic mobility of fresh and aged colloidal silica particles on the KCl concentration are measured. These dependences, corrected for the relaxation/polarization effect, are fitted by analytical expressions based on the model of hard, soft, and brush surfaces. A bad fit is obtained for both silicas when its surface is considered ideal (hard). Much better fits are achieved with the invariable soft layer model for the fresh silica but especially for the aged silica whose surface is less charged probably as a result of an extension and/or loosening of the layer. A perfect fit is found for aged silica when applying a trivial model of the soft polyelectrolyte layer combined with the scaling model of polyelectrolyte brushes.  相似文献   

17.
Phenomenologically, a primary dopant for a conducting polymer is a substance which drastically changes the electronic, optical, magnetic, and/or structural properties of the polymer and is accompanied by a large increase in conductivity. Phenomenologically, a secondary dopant is an apparently “inert” substance which, when applied to a primary-doped polymer, induces still further changes in the above properties including a further increase in conductivity. The concept of secondary doping will be illustrated using polyaniline and its derivatives.  相似文献   

18.
Interacting stereo-irregular chains of hydrogen atoms, which simulate the topological structure of many conducting polymers, are generated by a computer and solved numerically with the unrestricted Hartree–Fock method with a modified spin polarized potential. The electron localization is investigated, and a mechanism for the interchain tunneling is discovered. Local antiferromagnetic ordering is derived which may explain the AF behavior observed in some conducting polymers.  相似文献   

19.
Electrokinetically driven insulator-based microfluidic devices represent an attractive option to manipulate particle suspensions. These devices can filtrate, concentrate, separate, or characterize micro and nanoparticles of interest. Two decades ago, inspired by electrode-based dielectrophoresis, the concept of insulator-based dielectrophoresis (iDEP) was born. In these microfluidic devices, insulating structures (i.e., posts, membranes, obstacles, or constrictions) built within the channel are used to deform the spatial distribution of an externally generated electric field. As a result, particles suspended in solution experience dielectrophoresis (DEP). Since then, it has been assumed that DEP is responsible for particle trapping in these devices, regardless of the type of voltage being applied to generate the electric field—direct current (DC) or alternating current. Recent findings challenge this assumption by demonstrating particle trapping and even particle flow reversal in devices that prevent DEP from occurring (i.e., unobstructed long straight channels stimulated with a DC voltage and featuring a uniform electric field). The theory introduced to explain those unexpected observations was then applied to conventional “DC-iDEP” devices, demonstrating better prediction accuracy than that achieved with the conventional DEP-centered theory. This contribution summarizes contributions made during the last two decades, comparing both theories to explain particle trapping and highlighting challenges to address in the near future.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号