首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 121 毫秒
1.
《Current Applied Physics》2015,15(3):248-252
Red phosphors Ca9Bi1-x(PO4)7:xEu3+ (x = 0.06, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80 and 1.00) were synthesized by a conventional solid-state reaction (SSR) route. The X-ray diffraction patterns, photoluminescence spectra, ultraviolet–visible reflection spectroscopy, decay time and the International Commission on Illumination (CIE) chromaticity coordinates of these compounds were characterized and analyzed. The Eu-doped Ca9Bi(PO4)7 phosphors exhibited strong red luminescence which peaks located at 615 nm due to the 5D07F2 electric dipole transition of Eu3+ ions after excitation at 393 nm. Ultraviolet–visible spectra indicated that the band-gap of Ca9Bi0.30(PO4)7:0.70Eu3+ is larger than that of Ca9Bi(PO4)7. The results indicate that the phosphor Ca9Bi0.30(PO4)7:0.70Eu3+ can be a suitable red-emitting phosphor candidate for LEDs.  相似文献   

2.
The photoluminescence (PL) of ZrP2O7 and KZr2(PO4)3 phosphate crystalline micro-powders grown by spontaneous crystallization method is studied under vacuum ultra-violet (VUV) synchrotron radiation excitations (4–20 eV region of excitation photon energies) in 8–300 K temperature region. The electronic structures (partial densities of states) and optical absorbance spectra of the crystals are calculated by the Full-Potential Linear Augmented Plane Wave Method. Both phosphate crystals reveal PL emission band in the UV spectral region peaking near 300 and 295 nm for ZrP2O7 and KZr2(PO4)3 respectively. The spectral profile of the band weakly depends on temperature. The excitation spectra of the UV emission in each crystal contain intensive excitation band peaking at 189 and 182 nm for ZrP2O7 and KZr2(PO4)3 respectively. The excitation band of the UV emission is related to band-to-band electronic transitions with charge transfer from O 2p to Zr 4d states. The energy band gaps Eg of ZrP2O7 and KZr2(PO4)3 are estimated as 6.7 and 6.6 eV respectively.  相似文献   

3.
A series of new red phosphors, MZr2(PO4)3:Eu3+; Bi3+ (M=Na; K), were synthesized using the solidstate reaction method, and their photoluminescence spectra were measured. The MZr2(PO4)3:Eu3+; Bi3+ (M=Na; K) phosphors were efficiently excited by an ultraviolet (UV; 395 nm) source, and showed intense orange-red emission at 595 nm. Further investigation of the concentration-dependent emission spectra indicated that the MZr2(PO4)3:Eu3+; Bi3+ (M=Na; K) phosphors exhibit the strongest luminescence intensity when y = 0.01 in NaZr2(0:95−y)(PO4)3:Eu0.103+, Bi2y 3+ and y = 0.09 in NaZr2(0.95−y)(PO4)3:Eu0.103+, Bi2y 3+, whereas the relative PL intensity decreases with increasing Bi3+ concentration due to concentration quenching. The addition of Bi3+ widens the excitation band of NaZr2(0.95−y)(PO4)3:Eu0.103+, Bi2y 3+ around 320 nm, which provides the useful idea of broadening the excitation band around 300–350 nm to fit the ultraviolet chip.  相似文献   

4.
Luminescence of the Bi3+ single and dimer centers in UV and visible ranges is studied in YAG:Bi (0.13 and 0.27 at% of Bi, respectively) single crystalline films (SCFs), grown by liquid phase epitaxy from a Bi2O3 flux. The cathodoluminescence spectra, photoluminescence decays, and time-resolved spectra are measured under the excitation by accelerated electrons and synchrotron radiation with energies of 3.7 and 12 eV, respectively. The energy level structure of the Bi3+ single and dimer centers was determined. The UV luminescence of YAG:Bi SCF in the bands that peaked at 4.045 and 3.995 eV at 300 K is caused by radiative transitions of Bi3+ single and dimer centers, respectively. The excitation spectra of UV luminescence of Bi3+ single and dimer centers consist of two dominant bands, peaked at 4.7/4.315 and 5.7/6.15 eV, related to the 1S03P1 (A band) and 1S01P1 (C-band) transitions of Bi3+ ions, respectively. The excitation bands that peaked at 7.0 and 7.09 eV are ascribed to excitons bound with the Bi3+ single and dimer centers, respectively. The visible luminescence of YAG:Bi SCF presents superposition of several wide emission bands peaking within the 3.125-2.57 eV range and is ascribed to different types of excitons localized around the Bi3+ single and dimer centers. Apart from the above mentioned A and C bands the excitation spectra of visible luminescence contain wide bands at 5.25, 5.93, and 6.85 eV ascribed to the O2−→Bi3+ and Bi3+→Bi4+ + e charge transfer transition (CTT) in Bi3+ single and dimer centers. The observed significant differences in the decay kinetics of visible luminescence under excitation in A and C bands of Bi3+ ions, CTT bands, and in the exciton and interband transitions confirm the radiative decay of different types of excitons localized around Bi3+ ions in the single and dimer centers.  相似文献   

5.
Rare-earth-doped polycrystalline Ca3(PO4)2:Eu, Ca3(PO4)2:Dy and Ca3(PO4)2:Eu,Dy phosphors prepared by a modified solid-state synthesis has been studied for its X-ray diffraction, thermoluminescence (TL) and photoluminescence (PL) characteristics. The PL emission spectra of the phosphor suggest the presence of Eu3+ ion in Ca3(PO4)2:Eu and Dy3+ ion in Ca3(PO4)2:Dy lattice sites. The TL glow curve of the Ca3(PO4)2:Eu compounds has a simple structure with a prominent peak at 228 °C, while Ca3(PO4)2:Dy peaking at 146 and 230 °C. TL sensitivity of phosphors are compared with CaSO4: Dy and found 1.52 and 1.20 times less in Ca3(PO4)2:Eu and Ca3(PO4)2:Dy phosphors, respectively. The Ca3(PO4)2:Eu,Dy phosphors shows switching behavior under two different excitation wavelengths and enhancement in PL intensity of Dy3+ ions were reported. The paper discusses the photoluminescence and thermoluminescence behavior of Eu3+ and Dy3+ ion in Ca3(PO4)2 hosts, it may be applicable to solid-state lighting as well as thermoluminescence dosimetry applications.  相似文献   

6.
We report the results of complex study of luminescence and dynamics of electronic excitations in K2Al2B2O7 (KABO) crystals obtained using low-temperature luminescence-optical vacuum ultraviolet spectroscopy with sub-nanosecond time resolution under selective photoexcitation with synchrotron radiation. The paper discusses the decay kinetics of photoluminescence (PL), the time-resolved PL emission spectra (1.2–6.2 eV), the time-resolved PL excitation spectra and the reflection spectra (3.7–21 eV) measured at 7 K. On the basis of the obtained results three absorption peaks at 4.7, 5.8 and 6.5 eV were detected and assigned to charge-transfer absorption from O2? to Fe3+ ions; the intrinsic PL band at 3.28 eV was revealed and attributed to radiative annihilation of self-trapped excitons, the defect luminescence bands at 2.68 and 3.54 eV were separated; the strong PL band at 1.72 eV was revealed and attributed to a radiative transition in Fe3+ ion.  相似文献   

7.
罗彩香  夏海平  虞灿  徐军 《物理学报》2011,60(7):77806-077806
用坩埚下降法(Bridgman)生长出了Bi离子掺杂的CdWO4单晶.测定了晶体不同部位的吸收光谱、发射光谱和X射线电子能谱(XPS).Bi离子的掺入引起CdWO4晶体的吸收边从345 nm红移到399 nm.在311 nm, 373 nm,808 nm和980 nm光的激发下,分别观测到中心波长为470 nm,528 nm,1078 nm和较弱的1504 nm四个不同发射带.Bi:CdWO4单晶的XPS谱分别与Bi2 关键词: Bi离子 荧光光谱 X射线电子能谱 4单晶')" href="#">CdWO4单晶  相似文献   

8.
A series of orange reddish emitting phosphors Eu3+-doped Sr3Bi(PO4)3 have been successfully synthesized by conventional solid-state reaction, and its photoluminescence (PL) properties have been investigated. The excitation spectra reveal strong excitation bands at 392 nm, which match well with the popular emissions from near-UV light-emitting diode chips. The emission spectra of Sr3Bi(PO4)3:Eu3+ phosphors invariably exhibit five peaks assigned to the 5D07FJ (J=0, 1, 2, 3, 4) transitions of Eu3+ and have dominating emission peak at 612 nm under 392 nm excitation. The luminescence intensity was enhanced with increasing Eu3+ content and the emission reached the maximum intensity at x=0.05 in Sr3Bi(PO4)3:xEu3+. The energy transfer behavior in the phosphors was discussed. The Commission Internationale de lEclairage (CIE) chromaticity coordinates, the quantum efficiencies, and the decay curves of the entitled phosphors excited under 392 nm are also investigated. The experimental results indicate that the Eu3+-doped Sr3Bi(PO4)3 phosphors are promising orange reddish-emitting phosphors pumped by near-UV light.  相似文献   

9.
Single crystalline films of Bi-doped Y2SiO5 are studied at 4.2–350 K by the time-resolved luminescence methods under excitation in the 3.8–6.2 eV energy range. Ultraviolet luminescence of Y2SiO5:Bi (≈3.6 eV) is shown to arise from the radiative decay of the metastable and radiative minima of the triplet relaxed excited state (RES) of Bi3+ centers which are related to the 3P0 and 3P1 levels of a free Bi3+ ion, respectively. The lowest-energy excitation band of this emission, located at ≈4.5 eV, is assigned to the 1S0 → 3P1 transitions of a free Bi3+ ion. The phenomenological model is proposed to describe the excited-state dynamics of Bi3+ centers in Y2SiO5:Bi, and parameters of the triplet RES are determined.  相似文献   

10.
The photoluminescence (PL) of LiTb(PO3)4, LiGd0.97Sm0.03(PO3)4, and LiTb0.97Sm0.03(PO3)4 under vacuum ultraviolet (VUV)/ultraviolet (UV) excitation were studied. We observed the VUV–UV sensitization of Sm3+ emission (561 nm, 601 nm, 649 nm, and 710 nm) by Tb3+ in LiTb(PO3)4:Sm3+, which leads to the yellow light emission (486 nm, 546 nm, 561 nm, 587 nm, 601 nm, 621 nm, 649 nm, and 710 nm) of LiTb(PO3)4:Sm3+ phosphor under UV and VUV excitation. The emission is a result of partial energy transfer from Tb3+ to Sm3+, which is discussed in detail in terms of the excitation and emission spectra and decay curves.  相似文献   

11.
Polycrystalline KMgSO4Cl:Eu and Na5(PO4)SO4:Ce phosphors prepared by a wet chemical method have been studied for its photoluminescence (PL) and thermoluminescence (TL) characteristics. The TL glow curve of the compound has a prominent peak at 200 °C and may be useful for TL study. TL sensitivity of the KMgSO4Cl:Eu phosphor is found to be 1.7 times less than that of TLD—CaSO4:Dy. The presence of bands at around 420, 435 and 445 nm in the PL emission spectra of the phosphor suggests the presence of Eu2+ in the host compound. Moreover a TL glow curve of the Na5(PO4)SO4:Ce gives a better understanding of the TL mechanism (peaks at 271 and 310 °C) involved in the concerned phosphor. The PL emission spectra are observed at 382 nm for the various concentrations. In this paper we report PL and TL characteristics of KMgSO4Cl:Eu halosulphate and Na5(PO4)SO4:Ce phosphate sulphate phosphors first time.  相似文献   

12.
In this paper we report on the optical properties of triply Cr3+, Er3+, and RE3+ (RE=Tm, Ho, Eu) doped Gd3Ga5O12 crystals that were grown by the Czochralski method. Optical absorption, near-infrared (NIR), and mid-infrared (mid-IR) fluorescence spectra were characterized for the fabricated crystals and corresponding luminescence decay measurements under 654 nm excitation were also carried out. Based on the analysis of energy transfer process between Er and RE (RE=Tm, Ho, Eu) ions, the energy transfer efficiency (ETE) values were evaluated, correspondingly. From the spectral data of all the studied crystals, it is observed that the co-doped Cr3+ ion highly increases the absorption pump power and the three kinds of co-doped RE3+ ions depopulate the Er:4I13/2 energy level effectively. The spectral analysis shows that titled rare earth doped crystals are promising materials for ~3.0 μm mid-IR laser applications and among them Cr,Er,Eu:GGG is relatively more suitable due to its excellent optical properties compared with others.  相似文献   

13.
The results of a study of time-resolved photoluminescence (PL) and energy transfer in both pure and doped with Ce3+ ions SrAlF5 (SAF) single crystals are presented. The time-resolved and steady-state PL spectra in the energy range of 1.5–6.0 eV, the PL excitation spectra and the reflectivity in the energy range of 3.7–21 eV, as well as the PL decay kinetics were measured at 8.8 and 295 K. The lattice defects were revealed in the low temperature PL spectra (emission bands at 2.9 and 4.5 eV) in the undoped SAF crystals. The luminescence spectra of the doped Ce3+:SAF crystals demonstrate a new selective emission bands in the range of 3.7–4.5 eV with the exponential decay kinetics (τ ≈ 60 ns at X-ray excitation). These bands correspond to the d-f transitions in Ce3+ ions, which occupy nonequivalent sites in the crystal lattice.  相似文献   

14.
We report, for the first time on luminescence from a Er3+ doped SrAl2O4 phosphor. Effects of Eu3+ doping were also studied. The influence of rare-earth doping in crystal structure and its optical properties were analysed by means of X-ray diffraction (XRD), Raman scattering, optical absorption, excitation and emission (PL) spectroscopy, thermally stimulated luminescence (TSL) and scanning electron microscope (SEM). Luminescence spectra and luminescence decay curves for Er3+ transitions in the near infrared region were recorded. The PL maximum for Eu doped SrAl2O4 is obtained at 620 nm and corresponds to the orange region of the spectrum. Diffraction patterns reveal a dominant phase, characteristic of the monoclinic SrAl2O4 compound and the presence of dopants has no effect on the basic crystal structure of SrAl2O4. The shapes of the glow curves are different for each dopant irradiated with either a 90Sr-90Y beta source, or UV light at 311 nm, and in detail the TL signals differ somewhat between Er and Eu dopants.  相似文献   

15.
Rare-earth ions coactivated red phosphors Gd0.2RE1.8(WO4)3 (RE=Eu3+ and Sm3+) were synthesized by conventional solid-state reaction using boric acid as a flux agent. The samples were characterized by X-ray diffractometer (XRD), energy-dispersive X-ray spectrometer (EDS) and luminescence spectrometer (LS). The results showed that the Eu–Sm system exhibits higher emission intensity than those of the Eu single-doped system and Sm separate-doped system under ultraviolet (UV) radiation. Samarium(III) ions are effective in broadening and strengthened absorptions around 400 nm. Furthermore, it exhibits enhanced luminescence emission. when the mole ratio of boric acid is about 0.16, the luminescence capability is optimum. Two strongest lines at ultraviolet (394 nm) and blue (465 nm) in excitation spectra of these phosphors match well with the output wavelengths of UV and blue GaN-based light-emitting diodes (LEDs) chips.  相似文献   

16.
This paper reports on the results of the comprehensive study of the dynamics of electronic excitations in K2Al2B2O7 (KABO) crystals, obtained by low-temperature luminescence vacuum ultraviolet spectroscopy with nanosecond time resolution upon photoexcitation by synchrotron radiation. For the first time, the data have been obtained on the photoluminescence (PL) decay kinetics, PL spectra with time resolution, PL excitation spectra with time resolution, and reflection spectra at 7 K; the intrinsic nature of PL at 3.28 eV has been established; luminescence bands of defects have been separated in the visible and ultraviolet spectral regions; an intense long-wavelength PL band has been detected at 1.72 eV; channels of the formation and decay of electronic excitations in K2Al2B2O7 crystals have been discussed.  相似文献   

17.
Photoluminescence (PL) related to rare-earth (RE) impurities (Ho, Er and Eu) in AgGaS2 and CuGaS2 crystals has been studied. In Ho-doped AgGaS2 and CuGaS2, two series of PL lines are observed in 1.86–1.92 eV region and 2.24 eV region, and they are assigned to 5F35I7 and 5S25I8 transitions of the Ho3+ ion, respectively. Similarly, in Er-doped AgGaS2 and CuGaS2, Er3+-related two PL series are observed: 1.83–1.88 eV region (4F9/24I15/2) and 2.22–2.26 eV region (4S3/24I15/2). For both Ho and Er impurities, the profile of the PL spectrum in AgGaS2 is complex, and PL exhibited large number of lines compared with that in CuGaS2. The differences in PL spectra between this two compounds are related to the crystal field at the cation site and the local atomic arrangement of the RE impurities. This work also refers to the PL band at 2.28 eV observed for the Eu-doped AgGaS2 crystal.  相似文献   

18.
The luminescence spectra of Y2O3:Bi and Sc2O3:Bi ceramics have been investigated. The spectra have been resolved into elementary components by the Alentsev–Fock method. It has been established that the luminescence is attributed to emission centers of three types, two of which are due to the replacement of Y3+ (or Sc3+) by Bi3+ at the nodes of the crystal lattice of Y2O3 (or Sc2O3) with the point symmetry C 2 and C 3i . The emission center Bi3+ in the position C3i leads to the appearance of blue luminescence with maxima at 3.03 eV for Y2O3:Bi and at 3.05 eV for Sc2O3:Bi; this luminescence is attributed to the transition 3 P 11 S 0. The emission center Bi3+ in the position C 2 initiates green luminescence (which is also related to the 3 P 11 S 0 transition in Bi3+) with a maximum in the region of 2.40 eV in Y2O3:Bi and in the region of 2.46 eV in Sc2O3:Bi. The red luminescence band with maxima at 1.85 eV in Y2O3:Bi and at 1.95 eV in Sc2O3:Bi is related to the presence of structural defects.  相似文献   

19.
A method is proposed for detecting spectral characteristics of optically inactive molybdates of rare-earth elements by their doping with rare-earth ions whose luminescence lies in the transparency region of all structural modifications of the sample. Gadolinium molybdate is chosen as the object of investigations, while europium ions are used as an optically active and structurally sensitive admixture. It is shown that after the action of a high pressure under which gadolinium molybdate passes to the amorphous state, the spectral characteristics of Gd1.99Eu0.01(MoO4)3 (GMO:Eu) change radically; namely, considerable line broadening is observed in the luminescence spectra and the luminescence excitation spectra, while the long-wave threshold of optical absorption is shifted considerably (by approximately 1.1 eV) towards lower energies. It is found that by changing the structural state of GMO:Eu by solid-state amorphization followed by annealing, the spectral characteristics of the sample can be purposefully changed. This is extremely important for solving the urgent problem of designing high-efficiency light-emitting diodes producing “white” light.  相似文献   

20.
《Current Applied Physics》2020,20(5):696-702
Ca3(PO4)2:1mol%Ce3+/xGd3+ (where x = 0.5, 1.0, 3.0 and 5.0 mol%) phosphors were synthesized by the conventional combustion synthesis method. The X-ray diffraction patterns showed their rhombohedral structure with space group of R3c. The optical properties including reflectance, excitation and emission were investigated. The band gaps of the phosphors were calculated from diffuse reflectance spectra data using the Kubelka–Munk function. The photoluminescence (PL) excitation spectra exhibited the broadband 4f–5d transition of Ce3+ ions centered at ~265 nm. The PL emission properties of the Ca3(PO4)2:Ce3+/Gd3+ phosphors were studied as a function of the Gd3+ ion concentration. The Ca3(PO4)2:Ce3+/Gd3+ phosphor had a wide emission band ranging from 320 to 400 nm, and peaking at 365 nm. This emission is ascribed to the transition from the higher 5d band to 2F7/2, 2F5/2 states of the Ce3+ ion. The 365 nm peak shifted to longer wavelengths with increasing concentration of the Gd3+ ion. The CIE chromaticity diagram of Ca3(PO4)2:Ce3+/Gd3+ phosphor showed tunable emission colour from violet to violet-blue, suggesting that this phosphor can act as a source of violet-blue colour for application in information displays, phototherapy and photoluminescent liquid crystal displays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号