首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the R1−xDxMnO3 (x0.5) manganites, the structural phase transition at TCO is commonly interpreted as a concomitant charge and orbital ordering (CO/OO) process driven by a co-operative Jahn–Teller effect and Coulomb repulsion forces. The low-temperature phase is supposed to contain well-separated and ordered Mn3+ and Mn4+ ionic species in an NaCl-like pattern. Structure refinement, from a neutron diffraction experiment below TCO on a Pr0.6Ca0.4MnO3 single crystal, gives us a model for the displacement of atoms with respect to the high-temperature phase that invalidates the standard model based in the CO/OO picture. Our result is a non-centrosymmetric crystal structure with two non-equivalent MnO6 octahedra, both being slightly elongated but displaying very similar average Mn–O distances (1.96 and 1.95 Å, respectively) and having off-centered Mn atoms. We argue that this is a proof of the absence of charge ordering in half-doped manganites in the sense of formation of separated Mn3+ and Mn4+ ionic species. A new qualitative interpretation of the CE-type spin ordering (SO) is proposed. The so-called CO transition is, in fact, a structural transition induced by the change in the mean free path of electrons that continue to be thermally activated below TCO by forming ferromagnetic Mn–Mn pairs stabilized by a local double-exchange process. The CE SO pattern results from the ordering of these pairs formed at TCO. High-resolution synchrotron powder diffraction shows a complex anisotropic/asymmetric strains appearing at the transition that can be phenomenologically fitted by additional phases. Complementary electron diffraction and microscopy have shown no trace of macroscopic phase separation.  相似文献   

2.
There are a number of etched-track neutron dosimetry systems in routine use for personal monitoring. In this paper, the operational and dosimetric characteristics of these systems are summarized. Brief details are given of the dosemeter design, the material used, its quality control procedures, background, processing and read methods, neutron energy range, energy and angle dependence of response, decision threshold, linearity, signal storage stability, calibration methods including normalization, effect of influence quantities, and the advantages and disadvantages of the systems in routine application.  相似文献   

3.
The parameters of radio radiation generated in an air medium by an electron beam from a RELUS-1 small electron accelerator (Radiation Acceleration Center, MIFI) were studied theoretically and experimentally. Theoretical models for the generation of electromagnetic fields over the frequency range 10–3000 MHz induced by an electron beam were developed and studied. Electromagnetic fields from a beam of electrons were recorded over the frequency ranges 140–160 and 2794–2804. The discrepancy between theoretical estimates and recorded values was less than 50%.  相似文献   

4.
The system for real-time monitoring of radioactivity of a high-current proton linear accelerator detects secondary neutron emission from proton beam losses in transport channels and measures the activity of radionuclides in gas and aerosol emissions and the radiation background in the environment affected by a linear accelerator. The data provided by gamma, beta, and neutron detectors are transferred over a computer network to the central server. The system allows one to monitor proton beam losses, the activity of gas and aerosol emissions, and the radiation emission level of a linear accelerator in operation.  相似文献   

5.
6.
The radioactivity induced by carbon ions of the Heavy Ion Medical Machine (HIMM) was studied to asses its radiation protection and environmental impact. Radionuclides in the accelerator component, and in the cooling water and air at the target area, which are induced from primary beam and secondary particles, are simulated by FLUKA Monte Carlo code. It is found that radioactivity in the cooling water and air is not very important at the required beam intensity and energy that is needed for treatment, while radionuclides in the accelerator component may cause some problems for maintenance work and, therefore, a suitable cooling time is needed after the machine is shut down.  相似文献   

7.
S. Klotz  G. Hamel  J. Frelat 《高压研究》2013,33(1):219-223
We present a new type of compact hydraulic press of 200?t capacity and 60?kg mass provided with two large openings of 140° (equatorial) x 60° (azimuthal) around the sample area. This device has been designed and optimized using finite element calculations, and was built and recently successfully tested. A smaller version with 50 tonnes capacity and 8?kg mass is also available. This ‘VX’ type Paris–Edinburgh press is expected to have numerous applications in neutron and X-ray scattering whenever large sample volumes (typically 1–100?mm3) are required, in particular for angle-dispersive powder neutron diffraction on reactor sources, single crystal neutron diffraction, and inelastic neutron and X-ray scattering.  相似文献   

8.
J. Blomgren 《Pramana》2007,68(2):269-278
One of the outstanding new developments in the field of partitioning and transmutation (P&T) concerns accelerator-driven systems (ADS) which consist of a combination of a high-power, high-energy accelerator, a spallation target for neutron production and a sub-critical reactor core. The development of the commercial critical reactors of today motivated a large effort on nuclear data up to about 20 MeV, and presently several million data points can be found in various data libraries. At higher energies, data are scarce or even non-existent. With the development of nuclear techniques based on neutrons at higher energies, nowadays there is a need also for higher-energy nuclear data. To provide alternative to this lack of data, a wide program on neutron-induced data related to ADS for P&T is running at the 20–180 MeV neutron beam facility at ‘The Svedberg Laboratory’ (TSL), Uppsala. The programme encompasses studies of elastic scattering, inelastic neutron production, i.e., (n, xn′) reactions, light-ion production, fission and production of heavy residues. Recent results are presented and future program of development is outlined.   相似文献   

9.
A prototype 3He-based Passive Neutron Albedo Reactivity (PNAR) counter was developed and tested at Los Alamos National Laboratory (LANL) in collaboration with the Korea Atomic Energy Research Institute (KAERI) to measure the fissile content in electrochemical recycling (ER) product materials. The counter consists of 16 3He cylindrical gas-filled proportional counters at 4 atm of pressure embedded in high-density polyethylene. In this work, experimental measurements were performed at LANL to characterize the performance of the PNAR counter using surrogate materials for the uranium metal ingot. The purpose of these experiments was to: 1) measure the operating and calibration parameters of the PNAR counter (e.g. efficiency profiles, coincidence gate fractions, die-away time) and 2) evaluate the accuracy and sensitivity of the PNAR method and the time correlated induced fission (TCIF) method for quantifying the 235U mass in PWR fresh LEU fuel rods and Materials Testing Reactor (MTR) HEU fuel plates. A small 244Cm reference source (13,373 n/s) was placed in the center of the fuel rods and fuel plates to simulate spontaneous fission from sub-ppm (parts per million) levels of Cm contamination in the U ingot. In order to compare the relative accuracy of the PNAR and TCIF methods for quantifying 235U mass, calibration curves were generated for the net doubles rate and the doubles Cd ratio using the Deming software. The results from this experiment will be used to obtain a better understanding of the sensitivity of the PNAR and TCIF methods for samples with low neutron multiplication. Furthermore, this experimental measurement data will also help inform safeguards research and development (R&D) efforts on the viability of nondestructive assay (NDA) techniques and detector designs for quantifying fissile content in ER product materials. Future work will include performing measurements with the PNAR counter on small samples of U/TRU materials.  相似文献   

10.
At present, high energy electron linear accelerators (LINACs) producing photons with energies higher than 10 MeV have a wide use in radiotherapy (RT). However, in these beams fast neutrons could be generated, which results in undesired contamination of the therapeutic beams. These neutrons affect the shielding requirements in RT rooms and also increase the out-of-field radiation dose to patients. The neutron flux becomes even more important when high numbers of monitor units are used, as in the intensity modulated radiotherapy. Herein, to evaluate the exposure of patients and medical personnel, it is important to determine the full radiation field correctly. A model of the dual photon beam medical LINAC, Siemens ONCOR, used at the University Hospital Centre of Osijek was built using the MCNP611 code. We tuned the model according to measured photon percentage depth dose curves and profiles. Only 18 MV photon beams were modeled. The dependence of neutron dose equivalent and energy spectrum on field size and off-axis distance in the patient plane was analyzed. The neutron source strength (Q) defined as a number of neutrons coming from the head of the treatment unit per x-ray dose (Gy) delivered at the isocenter was calculated and found to be 1.12 × 1012 neutrons per photon Gy at isocenter. The simulation showed that the neutron flux increases with increasing field size but field size has almost no effect on the shape of neutron dose profiles. The calculated neutron dose equivalent of different field sizes was between 1 and 3 mSv per photon Gy at isocenter. The mean energy changed from 0.21 MeV to 0.63 MeV with collimator opening from 0 × 0 cm2 to 40 × 40 cm2. At the 50 cm off-axis the change was less pronounced. According to the results, it is reasonable to conclude that the neutron dose equivalent to the patient is proportional to the photon beam-on time as suggested before. Since the beam-on time is much higher when advanced radiotherapy techniques are used to fulfill high conformity demands, this makes the neutron flux determination even more important. We also showed that the neutron energy in the patient plane significantly changes with field size. This can introduce significant uncertainty in dosimetry of neutrons due to strong dependence of the neutron detector response on the neutron energy in the interval 0.1–5 MeV.  相似文献   

11.
To theoretically explore the feasibility of neutron dose characterized by Cerenkov photons, the relationship between Cerenkov photons and neutron dose in a water phantom was quantified using the Monte Carlo toolkit Geant4. Results showed that the ratio of the neutron dose deposited by secondary electrons above Cerenkov threshold energy to the total neutron dose is approximately a constant for monoenergetic neutrons from 0.01 eV to 100 eV. With the initial neutron beam energy from 0.01 eV to 100 eV, the number of Cerenkov photons has a good correlation with the total neutron dose along the central axis of the water phantom. The changes of neutron energy spectrum and mechanism analysis also explored at different depths. And the ratio of total neutron dose to the intensity of Cerenkov photons is independent of neutron energy for neutrons from 0.01 eV to 100 eV. These findings indicate that Cerenkov radiation also has potential in the application of neutron dose measurement in some specific fields.  相似文献   

12.
Abstract

This paper reports developments to enable neutron diffraction at simultaneous high temperatures and pressures using the Paris-Edinburgh cell. These include a new design of a cell assembly with internal heating. One of the novel features of our system is the use of neutron radiographic methods for measurement of temperature. Fully refinable neutron diffraction patterns obtained by time of flight technique with our apparatus are found to be of comparable quality to previous high-pressure studies at ambient temperatures. In this paper we describe the procedures for the generation and measurement of pressure and temperature and illustrate the quality of the data which can be obtained. The present system may be used on a routine basis for experiments up to 7 GPa and temperature approaching 2000 K. Current attempts are discussed for extending these measurements to a wider domain of pressures and temperatures.  相似文献   

13.
As neutron simulations packages are used for analysis of the expected performance for practically all newly built neutron instruments, possibilities for simulations with polarized neutrons have been relatively underdeveloped.During the last years we developed a new approach for the representation of time-dependent magnetic fields (both in magnitude and direction) for the VITESS simulation package. This allowed us to simulate the neutron spin dynamics in practically all polarized neutron devices (RF neutron flipper, adiabatic gradient RF flipper, the Drabkin resonator, etc.). In this article the above-mentioned VITESS instrument components (modules) will be presented and the simulated performance of a number of polarized neutron scattering instruments (NRSE, MIEZE, SESANS, etc.) will be demonstrated.Thus, we practically complete the polarized neutron suite of the VITESS, which seems sufficient for the simulation of performance of any existing polarized neutron scattering instrument. Future work will be concentrated on developments of dedicated sample modules (kernels) to allow for virtual experiments with VITESS.  相似文献   

14.
Research into advanced screening technologies has become high priority in all aspects of occupational nuclear safety and environmental radiation protection. Neutrons are a fundamental part of radiation encountered in various fields of nuclear science and technology and their detection is still employing detectors with a high thermal neutron response embedded in a thermalizing medium where helium based devices have been a dominant choice in many applications. Recently, there have been newly developed sensors based on multi-elements that include 6Li and 35Cl isotopes to detect neutrons and gamma radiation. Among these new sensors one can cite the elpasolite scintillator, known as CLYC. This sensor contains two neutron sensitive isotopes and may serve as a dual detector for gamma as well as for neutron radiation. In this paper, the response functions of this sensor have been investigated in different fields of neutron and gamma-radiation. The sensor responses have been simulated using Monte Carlo N-Particle MCNPX code and a series of experiments have been carried out to validate the simulated data. Both sets of data are presented and discussed.  相似文献   

15.
The set-up ‘energy plus transmutation’, consisting of a thick lead target and a natural uranium blanket, was irradiated by relativistic proton beams with the energy from 0.7 GeV up to 2 GeV. Neutron field was measured in different places of this set-up using different activation detectors. The possibilities of using the obtained data for benchmark studies are analyzed in this paper. Uncertainties of experimental data are shown and discussed. The experimental data are compared with results of simulation with MCNPX code.   相似文献   

16.
We designed a 100 MeV/100 kW electron linear accelerator for NSC KIPT, which will be used to drive a neutron source on the basis of subcritical assembly. Beam dynamics studies have been conducted to reach the design requirements (E=100 MeV, P=100 kW, dE/E<1% for 99% particles). In this paper, we will present the progress of the design and the dynamic simulation results. For high intensity and long beam pulse linear accelerators, the BBU effect is one big issue; special care has been taken in the accelerating structure design. To satisfy the energy spread requirement at the linac exit, the particles with large energy difference from the synchronous particle should be eliminated at a low energy stage to ease the design of the collimation system and radiation shielding. A dispersion free chicane with 4 bending magnets is introduced downstream of the 1st accelerating section; the unwanted particles will be collimated there.  相似文献   

17.
The ns2-type metal elements (Pb and Sn) doped LiCaAlF6 single crystals were grown by a micro-pulling-down (μ-PD) method. Pb doped LiCaAlF6 [Pb:LiCAF] crystals showed high transparency and single phase of the LiCAF structure. However, we could not obtain Sn:LiCAF crystals due to the evaporation of SnF2 during the crystal growth. There was an absorption peak around 193 nm in the transmittance spectrum of Pb:LiCAF crystal. In the radioluminescence spectrum of the Pb:LiCAF crystal under X-ray irradiation, two emission peaks around 200 and 830 nm were observed.  相似文献   

18.
用于n,γ混合场的新型脉冲中子探测器研究   总被引:4,自引:0,他引:4       下载免费PDF全文
新型脉冲中子探测器采用特殊工艺将两个PIN半导体组合而成.利用脉冲γ辐射研究了探测器对γ的响应;利用脉冲中子源研究了探测器对DT中了的响应,并与闪烁探测器进行了比较 .结果表明:脉冲中子探测器对脉冲γ辐射基本不灵敏,对脉冲中子辐射的灵敏程度依赖于中子辐射体,是一种用于n,γ混合脉冲辐射场中子测量的新型探测器. 关键词: 硅半导体 差分补偿 脉冲中子探测器 n γ混合场  相似文献   

19.
I Ahmad  N Bano  A N Saharia 《Pramana》1973,1(4):188-195
Weaknesses in Angeli and Csikai’s interpretation of their empirical formula for the neutron total cross section (σ T) are pointed out. Using the Fourier-Bessel re-presentation of the scattering amplitude a semi-empirical formula forσ T is obtained which has greater applicability and also explains the success of the empirical formula for mass numberA ⩾ 40 in terms of the established trends in neutron optical potential parameters.  相似文献   

20.
直线感应加速器机械轴精密对中方法   总被引:4,自引:0,他引:4       下载免费PDF全文
 介绍了大型直线感应加速器机械轴精密对中安装方法和工艺。直线感应加速器由多个组元连接而成,总长几十m。采用激光跟踪仪并配以全站仪、水准仪进行准直测量,再用专门设计的高精度调节机构调节,可使机械轴的准直达到较高的精度。分析了准直安装各步骤能达到的精度,研究了几十m长机械轴准直控制测量网的建立和理论坐标值的修正。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号