首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对电磁波极化不敏感超材料吸波体的研究   总被引:2,自引:0,他引:2  
设计了一个在微波频段对极化不敏感的超材料吸波体。该超材料微观单元由4个互相垂直的电谐振环和短导线构成,这种结构克服了Landy提出的结构对电磁波极化敏感的缺点,对垂直极化和水平极化电磁波都有很好的吸收效果。采用数值仿真方法,在12-180Hz波段提取了这种超材料的S参数,计算了其吸波率。单层超材料吸波体在14GHz处达到吸波峰,吸波率达57.4%;多层组合吸波体在150Hz处吸波率峰值达到87.6%。  相似文献   

2.
An ultra-wideband metamaterial absorber is developed,which is polarized-insensitive and angular-stable.Three layers of square resistive films comprise the proposed metamaterial.The optimal values of geometric parameters are obtained,such that the designed absorber can achieve an ultra-broadband absorption response from 4.73 to 39.04 GHz(relative bandwidth of 156.7%)for both transverse electricity and transverse magnetic waves.Moreover,impedance matching theory and an equivalent circuit model are utilized for the absorption mechanism analysis.The compatibility of equivalent circuit calculation results,together with both full-wave simulation and experimental results,demonstrates the excellent performance and applicability of the proposed metamaterial absorber.  相似文献   

3.
We propose a multi-band metamaterial absorber operating at terahertz frequencies. The design, characteriza- tion, and theoretical calculation of the high performance metamaterial absorber are reported. The multi-band metamaterial absorber consists of two metallic layers separated by a dielectric spacer. Theoretical and simulated results show that the metamaterial absorber has four distinct absorption points at frequenc/es 0.57 THz, 1.03 THz, 1.44 THz and 1.89 THz, with the absorption rates of 99.9%, 90.3%, 83.0%, 96.1%, respectively. Two single band metamaterial absorbers and a dual band metamaterial absorber on the top layer are designed. Some multi-band absorbers can be designed by virtue of combining some single band absorbers. The multiple-reflection theory is used to explain the absorption mechanism of our investigated structures.  相似文献   

4.
5.
杨森  袁苏  王佳云 《光学学报》2021,41(2):116-124
提出了一种基于方环-金属线结构的光激发动态可切换双频太赫兹超材料吸收器.通过调节嵌入在结构间隙中的光敏硅和锗的绝缘/导通状态,该吸收器可在不改变结构的前提下在三个双频完美吸收态之间自由切换.结果表明:当没有光泵浦时,该吸收器工作在0.987 THz和1.767 THz双频吸收态;当采用800 nm激光泵浦时,该吸收器可...  相似文献   

6.
We present the design of a planar metamaterial absorber based on lumped elements, which shows a wide-band polarization-insensitive and wide-angle strong absorption. This absorber consists of metal electric resonators, the dielectric substrate, the metal film and lumped elements. The simulated absorbances under two different loss conditions indicate that high absorbance in the absorption band is mainly due to lumped resistances. The simulated absorbances under three different load conditions indicate that the local resonance circuit (lumped resistance and capacitance) could boost up the resonance of the whole RLC circuit. The simulated voltage in lumped elements indicates that the transformation efficiency from electromagnetic energy to electric energy in the absorption band is high, and electric energy is subsequently consumed by lumped resistances. This absorber may have potential applications in many military fields.  相似文献   

7.
We present a design for a polarization insensitive metamaterial absorber at 9.5 GHz by utilizing properly arranged resonant unit cells with orthogonal polarization sensitivity. Full-wave electromagnetic simulation demonstrates nearly perfect microwave absorption, which has been verified by experimental measurement with a maximum absorption of about 92% for incident wave with different polarizations. Furthermore, we find such a metamaterial thin absorber could work for a wide incident angle ranging from 0° to 50°with absorption no less than 80° for both the transverse electric mode and transverse magnetic mode.  相似文献   

8.
Journal of Russian Laser Research - We achieve a frequency-switchable and amplitude-tunable terahertz metamaterial absorber (MMA) by means of introducing two different controlling degrees of...  相似文献   

9.
为了获得吸收率高、吸波带宽宽的超材料,设计了一种谐振超材料吸波体.该吸波体由多个开口圆环组成,采用商业软件CST Studio Suite 2009频域求解器计算了其在25~35 GHz波段内的S参量,并计算了其吸波率A(ω),在28.4 GHz处吸收率达到86%,带宽达到3.5 GHz.利用不同吸波频段的叠加效应,设计了一种谐振超材料吸波组合体,计算了在25~35 GHz波段的S参量,在29.7 GHz处吸波率达99.9%,吸波带宽达到3.1 GHz,吸收率明显增加.将GHz波段的结构缩小1 000倍,在THz波段同样可以达到高吸收,说明超材料吸波体可以通过对结构尺寸调节改变吸收波段.同时,对其阵列进行仿真计算,发现不同的排列方式仿真结果不同.由于各个谐振环之间的相互作用对吸收效果影响较大,吸收率减小.该吸波材料由金属组成,能灵活地对介电常量和磁导率进行调节,从而实现高吸收.  相似文献   

10.
为了获得吸收率高、吸波带宽宽的超材料,设计了一种谐振超材料吸波体.该吸波体由多个开口圆环组成,采用商业软件CST Studio Suite 2009频域求解器计算了其在25~35 GHz波段内的S参量,并计算了其吸波率A(ω),在28.4 GHz处吸收率达到86%,带宽达到3.5 GHz.利用不同吸波频段的叠加效应,设计了一种谐振超材料吸波组合体,计算了在25~35 GHz波段的S参量,在29.7 GHz处吸波率达99.9%,吸波带宽达到3.1 GHz,吸收率明显增加.将GHz波段的结构缩小1 000倍,在THz波段同样可以达到高吸收,说明超材料吸波体可以通过对结构尺寸调节改变吸收波段.同时,对其阵列进行仿真计算,发现不同的排列方式仿真结果不同.由于各个谐振环之间的相互作用对吸收效果影响较大,吸收率减小.该吸波材料由金属组成,能灵活地对介电常量和磁导率进行调节,从而实现高吸收.  相似文献   

11.
12.
We present a design of a low frequency ultra-thin compact and polarization-insensitive metamaterial absorber (MA). The designed MA is a two-layer structure, a periodic array of novel split-ring resonators (SRRs), which are constructed in an FR4 dielectric layer, and another ultra-thin grounded sheet is attached to the bottom. Numerical simulated results show that the proposed MA can realize effective absorption at the frequency 281.9 MHz, and its overall thickness is just only 0.29% of the resonant wavelength, the unit space is only 2.57%, and the absorbanee is kept well for a wide range of incident angles for different polarizations. In addition, the proposed MA is changed into a more compact one when the inter-digital structures are introduced in the SRRs. One convenient experiment is carried out in a rectangular waveguide simulator.  相似文献   

13.
In this article, a broadband metamaterial (MTM) absorber is proposed that exhibits near-unity absorption in the terahertz regime. The proposed metamaterial absorber was initiated on a quartz (fused) substrate, whereas the resonator and backplane are constructed with tungsten. The resonator is designed with a square ring loaded with a face-to-face E structure at the center. It also consists of diagonally extended arrow-like shapes loaded from the corners and a concave-shaped structure extended from the middle of the square ring. Near-perfect absorption is observed at the frequencies of 465.2 THz, 585.2 THz, 648.8 THz, and 762.8 THz with absorption peaks of 99.8%, 99.9%, 99.92%, and 99.92%, respectively. Moreover, it exhibits broadband absorption properties above 90% absorption with bandwidths 20.4 THz, 80.8 THz, 41.6 THz, and 90 THz, respectively, at these resonance frequencies. Due to its symmetrical structure, it shows polarization-insensitivity behavior up to 90° with maximum absorption greater than 90% both in transverse (TE) and transverse magnetic (TM) modes. It also exhibits insensitivity to changes of incident angle from 0°–45°. Metamaterial properties of the proposed absorber are also analyzed, showing single negative behavior. Absorber property has been examined through surface current and equivalent circuit electric and magnetic field analysis. The effect of the cross-polarization is negligible and is verified through simulation. Due to its large bandwidth, polarization-insensitive behavior, and low PCR, the proposed MTM absorber can be incorporated into photovoltaic devices as a solar-energy harvester.  相似文献   

14.
A metamaterial absorber is proposed that functions in the medium- (3–5 µm) and long-wavelength (8–12 µm) infrared (medium-wavelength infrared, MWIR, and long-wavelength infrared, LWIR, respectively) regions. The proposed design, which consists of periodic cells, can be tuned to achieve single-band or dual-band light absorption by changing the periodicity of the structure. Each cell forming the metamaterial absorber consists of a bottom metal plate (Al), a top metal disk (Ti), and an intermediate dielectric medium (Si or ZnS) in which a metal disk (Ti) is embedded. For a period of 0.85 µm, the absorber achieves broadband absorption in the LWIR region, with an average absorption of 92.1%. Further, the absorber shows acceptable tolerance to irradiation at oblique incidence. For a period of 2 µm, a peak absorption of 99.05% is achieved in the MWIR region, thereby providing dual-band absorption. Tuning the periodicity of the structure enhances the localized surface plasmon resonance, with the absorption mechanism explained by establishing an equivalent parallel LC circuit. The absorption properties demonstrated by the proposed metamaterial absorber are promising for thermal imaging and infrared spectroscopy.  相似文献   

15.
We propose a design and numerical study of an optically blueshift and redshift switchable metamaterial(MM)absorber in the terahertz regime. The MM absorber comprises a periodic array of metallic split-ring resonators(SRRs) with semiconductor silicon embedded in the gaps of MM resonators. The absorptive frequencies of the MM can be shifted by applying an external pump power. The simulation results show that, for photoconductivity of silicon ranging between 1 S/m and 4000 S/m, the resonance peak of the absorption spectra shifts to higher frequencies, from 0.67 THz to 1.63 THz, with a resonance tuning range of 59%. As the conductivity of silicon increases, the resonance frequencies of the MM absorber are continuously tuned from 1.60 THz to 1.16 THz, a redshift tuning range of 28%. As the conductivity increases above 30000 S/m, the resonance frequencies tend to be stable while the absorption peak has a merely tiny variation. The optical-tuned absorber has potential applications as a terahertz modulator or switch.  相似文献   

16.
太赫兹超材料吸收器作为一种重要的太赫兹功能器件,被广泛应用于生物医学传感、电磁隐身、军用雷达等多个领域.但这种传统的超材料吸收器结构具有可调谐性差、功能单一、性能指标不足等缺点,已经无法满足复杂多变的电磁环境的要求,因此可调谐超材料吸收器逐渐成为了太赫兹功能器件领域的研究热点.为实现超材料吸收器吸收特性的调谐,通常从调...  相似文献   

17.
Adiabatic inversion recovery radiofrequency (RF) pulse techniques are used to address B 1 inhomogeneity; however, the specific absorption rates of these techniques are significantly higher than that of non-adiabatic RF pulse techniques. In addition, time efficiency is poorer because of the required longer inversion recovery time. Therefore, an RF pulse train with three subpulses was previously developed and reported. The purpose of this article was to generalize the RF pulse train for tissues with different T 1 relaxation times and in a different application. The RF pulse train B 1 insensitivities and frequency responses were calculated with different T 1 relaxation times and different subpulse durations using the Bloch equation. The previously reported optimal flip angle (FA) combination was used. When using the optimal FA combination, the RF pulse train B 1 insensitivity did not change even if the T 1 relaxation times and the subpulse durations did change. In other words, the optimal FA combination does not require adjustments according to the T 1 and subpulse duration. The RF pulse train frequency responses with these subpulses can be dramatically improved even if the inherent subpulse frequency response is poor. This finding will facilitate RF pulse train technique implementation on magnetic resonance imaging scanners.  相似文献   

18.
李媛  邵凤兰 《中国物理 C》2007,31(9):810-814
在分析不同情形超子衰变的基础上, 给出超子衰变对超子产生率和末态超子极化的贡献的一般计算公式. 用Monte-Carlo数值计算研究强子衰变对高能反应末态超子极化的影响,结果发现, 强子衰变对Λ超子的贡献很大这一结论具有普遍性, 与模型无关; 不同模型给出的单极化pp碰撞产生的大横动量Λ超子极化的差别, 很可能相当大一部分来源于强子衰变. 考虑到衰变对极化贡献的计算中有较大不确定性, 检验不同模型, 最好看Σ±0的极化.  相似文献   

19.
具有室温巨隧道磁电阻效应与高自旋极化率的新材料   总被引:1,自引:0,他引:1  
都有为 《物理》2002,31(4):203-204
回顾了隧道磁电阻效应发展简史及其应用,报道了锌铁氧体/氧化铁二相纳米复合材料在室温具有巨磁隧道电阻效应的实验结果,该实验结果表明锌铁氧体是具有高自旋极化率的一类新材料,值得进一步开展相关的研究工作.  相似文献   

20.
唐燕  胡松  赵立新  朱江平  何渝 《光学学报》2012,32(12):1205002-60
根据角谱理论建立不同偏振照明条件下的光子筛矢量衍射模型。在此基础上,对入射光分别为线偏振光、径向偏振光、切向偏振光三种特殊偏振状态下的光子筛聚焦光强分布进行了模拟分析。研究结果表明,对于大数值孔径光子筛,入射光的偏振特性将对光子筛聚焦光强分布产生巨大影响。线偏振光将使聚焦光斑沿偏振方向拉伸,切向偏振光产生的聚焦光斑具有"中空"结构,而径向偏振光所产生的聚焦光斑呈较为规则的圆形,且其焦深优于线偏照明情况。在激光直写及高分辨成像等光子筛典型应用中采用径向偏振照明将进一步提高系统分辨力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号