首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Future astronomical instruments call for large format and high sensitivity far infrared focal-plane arrays to meet their science objectives. Arrays as large as 128 × 128 with sensitivities equal to or better than 10−18 W/√Hz are set as targets for the far IR instruments to be developed within the next 10 years. These seemingly modest goals present a not-so-modest quantum leap for far IR detector technology whose progress is hampered by a number of complexities; chief among them the development of low noise readouts operating at deep cryogenic temperatures and a viable hybridization scheme suitable for far IR detectors. In an effort to incrementally develop large-format photoconductor arrays, we have fabricated a 2 × 16 Ge:Sb array using the SBRC190 readout – a cryogenic 1 × 32 CTIA readout multiplexer initially developed for SOFIA’s AIRES instrument. In this paper we report the results of the extensive parametric tests performed on this array showing an impressive noise performance of 2.2 × 10−18 W/√Hz and a DQE of 0.41 despite some design limitations. With such an encouraging performance, this prototype array will serve as a platform for our future developmental effort.  相似文献   

2.
This work focuses on the fabrication and response of dipole antenna-coupled metal–oxide–metal diode detectors to long-wave infrared radiation. The detectors are fabricated using a single electron beam lithography step and a shadow evaporation technique. The detector’s characteristics are presented, which include response as a function of incident infrared power and polarization angle. In addition, the effect of dipole antenna length on detection characteristics for 10.6 μm radiation has been measured to determine resonant lengths. The response of the detector shows a first resonance at a dipole length of 3.1 μm, a second resonance at 9.3 μm, and third at 15.5 μm. The zeros intermediate to the resonances are also evident.  相似文献   

3.
A GaAs/AlGaAs heterojunction is used as a spin-split-off band IR detector operating at or around room temperature. This detector structure followed a similar layer architecture to the quantum well IR photo detectors (QWIP) and Heterojunction Interfacial Work function Internal Photoemission (HEIWIP) detectors. Compared to QWIPs, the emitter layer thickness is increased to avoid confinement. Unlike either the QWIPs or HEIWIPs, these detectors will have two energy gaps (barriers) to obtain the wavelength threshold which could be used to design detectors either for optimum operating temperature or optimum responsivity. The free carrier energy gap is determined by the Al fraction and the spin-split-off transition energy provides another handle on controlling the effective threshold of the detector. Unlike QWIPs, these will also detect normal incidence radiation. A preliminary detector showed a peak responsivity of 0.29 mA/W at 2.5 μm at room temperature.  相似文献   

4.
Planar extrinsic sulfur-doped silicon detectors for infrared (IR) semiconductor-discharge gap image converters intended for use in high-speed thermography of remote objects have been developed. The detectors were fabricated by high-temperature diffusion of sulfur into silicon wafers from the vapor phase. The dependence of doping efficiency on the sulfur vapor pressure in the course of diffusion was analyzed. The detector fabrication technology was optimized to meet the specific requirements for their operation in the microdischarge devices considered. The detectors were tested in a laboratory setup comprising a blackbody source of IR light, an image converter, and a pulsed CCD camera for recording the converted images. The converter equipped with the detector can provide imaging of objects heated to a temperature, Tmin  200 °C, with a temporal resolution on the order of 10?6 s and spatial resolution of about 5 lines/mm.  相似文献   

5.
A review of high operating temperature (HOT) infrared (IR) photon detector technology vis-a-vis material requirements, device design and state of the art achieved is presented in this article. The HOT photon detector concept offers the promise of operation at temperatures above 120 K to near room temperature. Advantages are reduction in system size, weight, cost and increase in system reliability. A theoretical study of the thermal generation–recombination (g–r) processes such as Auger and defect related Shockley Read Hall (SRH) recombination responsible for increasing dark current in HgCdTe detectors is presented. Results of theoretical analysis are used to evaluate performance of long wavelength (LW) and mid wavelength (MW) IR detectors at high operating temperatures.  相似文献   

6.
Uncooled infrared detectors (IR) on a polyimide substrate have been demonstrated where amorphous silicon (a-Si) was used as the thermometer material. New concepts in uncooled microbolometers were implemented during the design and fabrication, such as the integration of a germanium long-pass optical filter with the device-level vacuum package and a double layer absorber structure. Polyimide was used for this preliminary work towards vacuum-packaged flexible microbolometers. The detectors were fabricated utilizing a carrier wafer and low adhesion strength release layer to hold the flexible polyimide substrate during fabrication in order to increase the release yield. The IR detectors showed a maximum detectivity of 4.54 × 106 cm Hz1/2/W at a 4 Hz chopper frequency and a minimum noise equivalent power (NEP) of 7.72 × 10−10 W/Hz1/2 at a biasing power of 5.71 pW measured over the infrared wavelength range of 8–14 μm for a 35 μm × 35 μm detector. These values are comparable to other flexible microbolometers with device-level vacuum packaging which are found in literature.  相似文献   

7.
The influence of damage induced by 2 MeV protons on CdZnTe radiation detectors is investigated using ion beam induced charge (IBIC) microscopy. Charge collection efficiency (CCE) in irradiated region is found to be degraded above a fluence of 3.3 × 1011 p/cm2 and the energy spectrum is severely deteriorated with increasing fluence. Moreover, CCE maps obtained under the applied biases from 50 V to 400 V suggests that local radiation damage results in significant degradation of CCE uniformity, especially under low bias, i. e., 50 V and 100 V. The CCE nonuniformity induced by local radiation damage, however, can be greatly improved by increasing the detector applied bias. This bias-dependent effect of 2 MeV proton-induced radiation damage in CdZnTe detectors is attributed to the interaction of electron cloud and radiation-induced displacement defects.  相似文献   

8.
A study of intersubband transitions in quantum well infrared detectors working at high temperatures has been reported. This study allows a greater tunability in the device designs, with the ability to control the peak wavelength, the absorption coefficient, the dark current, the quantum efficiency and the detectivity of the modeled structure operating around 3.3 μm wavelength. The detection energy and absorption coefficient dependences with an applied electric field are given. Then, the electro-optic performances of the modeled mid-infrared detector are estimated, the dark current dependence with the applied voltage and temperature as well as the quantum efficiency and the detectivity are investigated and discussed. High detectivities were found at high temperatures revealing the good performances of the designed photodetector, especially at 3.3 μm wavelength.  相似文献   

9.
Quantum Well Infrared Photodetector (QWIP) usually suffer from a too moderate quantum efficiency and too large dark current which is often announced as crippling for low flux applications. Despite this reputation we demonstrate the ability of QWIP for the low infrared photon flux detection. We present the characterization of a state of the art 14.5 μm QWIP from Alcatel-Thales III–V Lab. We developed a predictive model of the performance of an infrared instrument for a given application. The considered scene is a cryogenic wind tunnel (ETW), where a specific Si:Ga camera is currently used. Using this simulation tool we demonstrate the QWIP ability to image a low temperature scene in this scenario. QWIP detector is able to operate at 30 K with a NETD as low as 130 mK. In comparison to the current detector, the operating temperature is 20 K higher. The use of a QWIP based camera would allow a huge simplification of the optical part.  相似文献   

10.
SB349 is the first 32 × 32 CTIA readout multiplexer specifically designed for far-IR photodetectors and is operable at cryogenic temperatures at least as low as 1.7 K. Four of these readouts can be butted together to form a 64 × 64 mosaic array. The array is multiplexed into eight parallel outputs and features eight selectable gain settings to accommodate various background levels, auto-zero for better input uniformity, and sample-and-hold circuitry. A special, 2-micron cryo-CMOS process was adopted to prevent freeze out and ensure low noise and proper operation at deep cryogenic temperatures. The read noise of the bare device at 4.2 K and under nominal sampling conditions was measured to be about 250e? for the 106fF signal capacitor with the well capacity of 400ke?. Hybridized to a typical germanium detector, the array should achieve NEP levels in the low 10–18 W/√Hz. An overview of the design and the latest results of the test and characterization of this device are reported in this paper.  相似文献   

11.
We study the mechanisms of photoconductivity in graphene layer–graphene nanoribbon–graphene layer (GL–GNR–GL) structures with the i-type gapless GL layers as sensitive elements and I-type GNRs as barrier elements. The effects of both an increase in the electron and hole densities under infrared illumination and the electron and hole heating and cooling in GLs are considered. The device model for a GL–GNR–GL photodiode is developed. Using this model, the dark current, photocurrent, and responsivity are calculated as functions of the structure parameters, temperature, and the photon energy. The transition from heating of the electron–hole plasma in GLs to its cooling by changing the incident photon energy can result in the change of the photoconductivity sign from positive to negative. It is demonstrated that GL–GNR–GL photodiodes can be used in effective infrared and terahertz detectors operating at room temperature. The change in the photoconductivity sign can be used for the discrimination of the incident radiation with the wavelength 2–3 μm and 8–12 μm.  相似文献   

12.
Due to its tuneable narrow band gap, HgCdTe (MCT) is a material of choice for high complexity IR focal plane arrays (FPAs). Being a strategic defence technology, MCT detector developments is totally mastered at every stage of fabrication at LETI and Sofradir, from the lattice matched CZT substrate growth, the active layer MCT growth, to PV technology, silicon ROIC design and flip chip hybridization. Within the last few years, MCT devices have considerably evolved in terms of device complexity, performances, and field of action. n/p standard technology has been developed in all spectral ranges, from VLWIR (20 μm) down SWIR (1.7 μm). MCT photodiode sensibility goes even lower, down to visible and even UV with a constant quantum efficiency. Moreover, MCT material provides us with high and noiseless avalanche gains inside the photodiode itself, which we are now fully able to use for the optimization of FPA performances. Besides, p/n diode structure is a new emerging process which improves detector performances by several orders of magnitude in terms of dark current, by comparison with the n/p historical structure. This technology has been successfully demonstrated from VLWIR (15 μm cut off) down to the SWIR range (2 μm cut off) where ultra low dark currents are recorded at low temperatures (0.4 e/s). In the same time, first dual band FPAs are delivered, which are expected to be the 3rd generation of IR detectors. At last, considerable efforts are made in order to increase the operational temperature, going from 100 K to 150 K for MWIR FPAs at constant performances, optimizing all technological steps, especially growth issues. Going at even higher operating temperatures (HOTs) is also under active study.  相似文献   

13.
We report the growth by Molecular Beam Epitaxy (MBE), fabrication and characterization of silicon doped 20 layer InAs dot in a well quantum dot infrared photo detector (DWELL-QDIP) device structures. Two structures with InAs dots of vertical heights of 50 Å and 40 Å were compared. A 2–8 μm band normal incidence photo response of the detector with polarization and bias dependence was obtained at 77 K. The specific peak detectivity D1 be 0.8 × 109 Jones for one of the detectors.  相似文献   

14.
The Resistive Plate Chamber (RPC) has been developed in many application areas ever since its introduction, from high energy physics experiments to positron emission tomography. Such detectors can be coated with a Gd layer that enables them to detect thermal neutrons. Consequently these RPCs can be utilized for industrial and medical purposes. Here, we present the configuration of a resistive plate chamber which is utilized to detect thermal neutrons by employing GEANT4 Monte Carlo code. The response of the RPC was evaluated as a function of neutron energy in the GEANT4 Monte Carlo code. The simulation results are taken for incident neutron energy in the energy range from 25 meV to 100 meV. The detection efficiency was found to be between 10% and 20%, depending on the detector configuration, for incident thermal neutrons of 25 meV energy.  相似文献   

15.
The spectral responsivity of cryogenically cooled HgCdTe detectors was observed to drift slowly with time. The magnitude of the drift was shown to be strongly dependent on wavelength. The origin of the drift was investigated and was shown to arise due to a thin film of water ice depositing on the active area of the cold detector. The presence of the ice film (which is a dielectric film) interacts with the detector structure thus altering its absorbance characteristics and gives rise to the observed drifts. The drifts were temporarily eliminated by evacuating the detector dewars while baking them at 50 °C for about 48 h. This work demonstrates that HgCdTe infrared detectors should be evacuated and baked at least annually and in some cases (depending on the quality of the dewar and the measurement uncertainty required) more frequently. These observations are particularly relevant to HgCdTe detectors mounted in dewars which utilise rubber O-rings, as the ingress of moisture was found to be particularly serious in this type of dewar. This paper also identified other sources of drift present in the output of cryogenically cooled photoconductive HgCdTe detectors whose origins are currently not understood.  相似文献   

16.
A thermal radiative inverse method was used to determine the high-temperature spectral properties of an ultraviolet fused silica from transmittance data for wavelengths from 0.8 to 5 µm. A developed FTIR system used to measure apparent transmittances of the fused silica sample has been designed and built. In order to reduce the system error caused by detector emission and stray radiation, a measurement strategy at high temperatures was proposed. For deriving spectral transport properties from experimental transmittances, the parameter identification principle was described. The results show that spectral properties are both wavelength dependent and temperature dependent. Spectral refractive indexes rise with increasing temperature and decrease with wavelength. Three absorption peaks of spectral absorptive indices respectively at about 1.4 µm, 2.22 µm and 2.75 µm shift toward the far infrared region and vary differently with increasing temperature. In addition, three absorption bands all become broader for temperatures from 20 °C to 900 °C.  相似文献   

17.
The multi-waveband temperature sensor (MWTS) array, in which each super-pixel (2 × 2 pixel cell) operates at four distinct thermal infrared (IR) wavebands is being developed. Using this high spatial resolution, four-band thermal IR band detector array, accurate temperature measurements on the surface of an object can be made without prior knowledge of its exact emissivity. This multi-band detector involves intersubband transition in III–V semiconductor-based quantum layered structures. Each detector stack absorbs photons within the specified wavelength band while allowing the transmission of photons in other spectral bands, thus efficiently permitting multi-band detection. This produces multiple, spectrally resolved images of the scene that are recorded simultaneously in a single snapshot on the FPA. From the multispectral images and calibration information about the system, computational algorithms are used to evaluate the temperature on the surface of a target.  相似文献   

18.
Human will be sooner or later return to the moon and will eventually travel to the planets near Earth. Space radiation hazards are an important concern for human space flight in deep space where galactic cosmic rays (GCR) and solar energetic particles are dominated and radiation is much stronger than that in LEO (Low Earth Orbit) because in deep space there is no magnetosphere to screen charged particle and no big planet nearby to shadow the spacecraft.Research indicates that the impact of particle radiation on humans depends strongly on the particles' linear energy transfer (LET) and the radiation risk is dominated by high LET radiation. Therefore, radiation research on high LET should be emphasized and conducted systematically so as to make radiation risk as low as reasonably achievable (ALARA) for astronauts.Radiation around the moon can be measured with silicon detectors and/or CR-39 plastic nuclear track detectors (PNTDs). At present stage the silicon detectors are one of the preferred active dosimeters which are sensitive to all LET and CR-39 detectors are the preferred passive dosimeters which are sensitive to high LET (≥5 keV/μm water). CR-39 PNTDs can be used as personal dosimeters for astronauts. Both the LET spectrum and the charge spectrum for charged particles in space can be measured with silicon detectors and CR-39 detectors.Calibrations for a detector system combined with the silicon detectors CRaTER (Cosmic Rays Telescope for the Effects of Radiation) from Boston University and Massachusetts Institute of Technology, and the CR-39 PNTDs from JSC (Johnson Space Center) – SRAG (Space Radiation Analysis Group) were conducted by exposing the detector system to the accelerator generated protons and heavy ions. US space mission for the radiation measurement around the moon using CRaTER was carried out in 2009.Results obtained from the calibration exposures indicate an excellent agreement between LET spectrum and charge spectrum measured with CR-39 detectors and simulated with PHITS (Particle and Heavy Ion Transport System).This paper introduces the LET spectrum method and charge spectrum method using CR-39 PNTDs and the Monte Carlo simulation method for CR-39 detectors, presents and compares the results measured with CR-39 PNTDs and simulated for CR-39 detectors exposed to heavy irons (600 MeV/n) in BNL (Brookhaven National Laboratory) in front and behind the CRaTER.  相似文献   

19.
The InAs/GaSb type-II superlattice based complementary barrier infrared detector (CBIRD) has already demonstrated very good performance in long-wavelength infrared (LWIR) detection. In this work, we describe results on a modified CBIRD device that incorporates a double tunnel junction contact designed for robust device and focal plane array processing. The new device also exhibited reduced turn-on voltage. We also report results on the quantum dot barrier infrared detector (QD-BIRD). By incorporating self-assembled InSb quantum dots into the InAsSb absorber of the standard nBn detector structure, the QD-BIRD extend the detector cutoff wavelength from ∼4.2 μm to 6 μm, allowing the coverage of the mid-wavelength infrared (MWIR) transmission window. The device has been observed to show infrared response at 225 K.  相似文献   

20.
At present, uncooled thermal detector focal plane arrays are successfully used in staring thermal imagers. However, the performance of thermal detectors is modest, they suffer from slow response and they are not very useful in applications requiring multispectral detection. Infrared (IR) photon detectors are typically operated at cryogenic temperatures to decrease the noise of the detector arising from various mechanisms associated with the narrow band gap. There are considerable efforts to decrease system cost, size, weight, and power consumption to increase the operating temperature in so-called high-operating-temperature (HOT) detectors. Initial efforts were concentrated on photoconductors and photoelectromagnetic detectors. Next, several ways to achieve HOT detector operation have been elaborated including non-equilibrium detector design with Auger suppression and optical immersion. Recently, a new strategies used to achieve HOT detectors include barrier structures such as nBn, material improvement to lower generation-recombination leakage mechanisms, alternate materials such as superlattices and cascade infrared devices. Another method to reduce detector’s dark current is reducing volume of detector material via a concept of photon trapping detector. In this paper, a number of concepts to improve performance of photon detectors operating at near room temperature are presented. Mostly three types of detector materials are considered — HgCdTe and InAsSb ternary alloys, and type-II InAs/GaSb superlattice. Recently, advanced heterojunction photovoltaic detectors have been developed. Novel HOT detector designs, so called interband cascade infrared detectors, have emerged as competitors of HgCdTe photodetectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号