首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 15 毫秒
1.
The present work addresses the correlation of bisphenol A (BPA) degradation by hydrodynamic cavitation with the fluid mechanical properties of the cavitating jet in the reactor. The effects of inlet pressure and two orifices were investigated. The fluid mechanics conditions during the reaction were evaluated by optical measurements to determine the jet length, bubble volume, number of bubbles, and bubble size distribution. In addition, chemiluminescence of luminol is used to localize chemically active bubbles due to the generation of hydroxyl radicals in the reactor chamber. The correlation between the rate constants of BPA degradation and the mechanical properties of the liquid is discussed. Here, linear dependencies between the degradation of BPA and the volume expansion of the bubble volume and chemiluminescence are found, allowing prediction of the rate constants and the hydroxyl radicals generated. BPA degradation of 50% was achieved in 30 min with the 1.7 mm nozzle at 25 bar. However, the 1 mm nozzle has been demonstrated to be more energetically efficient, achieving 10% degradation with 30% less power per 100 passes. There is a tendency for the number of small bubbles in the reactor to increase with smaller nozzle and increasing pressure difference.  相似文献   

2.
We present a simple and efficient fluid–solid coupling method in two and three spatial dimensions. In particular, we consider the numerical approximation of the Navier–Stokes equations on irregular domains and propose a novel approach for solving the Hodge projection step on arbitrary shaped domains. This method is straightforward to implement and leads to a symmetric positive definite linear system for both the projection step and for the implicit treatment of the viscosity. We demonstrate the accuracy of our method in the L1L1 and LL norms and present its removing the errors associated with the conventional rasterization-type discretizations. We apply this method to the simulation of a flow past a cylinder in two spatial dimensions and show that our method can reproduce the known stable and unstable regimes as well as correct lift and drag forces. We also apply this method to the simulation of a flow past a sphere in three spatial dimensions at low and moderate Reynolds number to reproduce the known steady axisymmetric and non-axisymmetric flow regimes. We further apply this algorithm to the coupling of flows with moving rigid bodies.  相似文献   

3.
We present an implicit immersed boundary method for the incompressible Navier–Stokes equations capable of handling three-dimensional membrane–fluid flow interactions. The goal of our approach is to greatly improve the time step by using the Jacobian-free Newton–Krylov method (JFNK) to advance the location of the elastic membrane implicitly. The most attractive feature of this Jacobian-free approach is Newton-like nonlinear convergence without the cost of forming and storing the true Jacobian. The Generalized Minimal Residual method (GMRES), which is a widely used Krylov-subspace iterative method, is used to update the search direction required for each Newton iteration. Each GMRES iteration only requires the action of the Jacobian in the form of matrix–vector products and therefore avoids the need of forming and storing the Jacobian matrix explicitly. Once the location of the boundary is obtained, the elastic forces acting at the discrete nodes of the membrane are computed using a finite element model. We then use the immersed boundary method to calculate the hydrodynamic effects and fluid–structure interaction effects such as membrane deformation. The present scheme has been validated by several examples including an oscillatory membrane initially placed in a still fluid, capsule membranes in shear flows and large deformation of red blood cells subjected to stretching force.  相似文献   

4.
An improved penalty immersed boundary (pIB) method has been proposed for simulation of fluid–flexible body interaction problems. In the proposed method, the fluid motion is defined on the Eulerian domain, while the solid motion is described by the Lagrangian variables. To account for the interaction, the flexible body is assumed to be composed of two parts: massive material points and massless material points, which are assumed to be linked closely by a stiff spring with damping. The massive material points are subjected to the elastic force of solid deformation but do not interact with the fluid directly, while the massless material points interact with the fluid by moving with the local fluid velocity. The flow solver and the solid solver are coupled in this framework and are developed separately by different methods. The fractional step method is adopted to solve the incompressible fluid motion on a staggered Cartesian grid, while the finite element method is developed to simulate the solid motion using an unstructured triangular mesh. The interaction force is just the restoring force of the stiff spring with damping, and is spread from the Lagrangian coordinates to the Eulerian grids by a smoothed approximation of the Dirac delta function. In the numerical simulations, we first validate the solid solver by using a vibrating circular ring in vacuum, and a second-order spatial accuracy is observed. Then both two- and three-dimensional simulations of fluid–flexible body interaction are carried out, including a circular disk in a linear shear flow, an elastic circular disk moving through a constricted channel, a spherical capsule in a linear shear flow, and a windsock in a uniform flow. The spatial accuracy is shown to be between first-order and second-order for both the fluid velocities and the solid positions. Comparisons between the numerical results and the theoretical solutions are also presented.  相似文献   

5.
The research on the potential of cavitation exploitation is currently an extremely interesting topic. To reduce the costs and time of the cavitation reactor optimization, nowadays, experimental optimization is supplemented and even replaced using computational fluid dynamics (CFD). This is a very inviting opportunity for many developers, yet we find that all too often researchers with non-engineering background treat this “new” tool too simplistic, what leads to many misinterpretations and consequent poor engineering.The present paper serves as an example of how complex the flow features, even in the very simplest geometry, can be, and how much effort needs to be put into details of numerical simulation to set a good starting point for further optimization of cavitation reactors. Finally, it provides guidelines for the researchers, who are not experts in computational fluid dynamics, to obtain reliable and repeatable results of cavitation simulations.  相似文献   

6.
An Eulerian hyperbolic diffuse interface model for elastic–plastic solid–fluid interaction is constructed. The system of governing equations couples Euler equations of compressible fluids and a visco-plastic model of Maxwell type materials (the deviatoric part of the stress tensor decreases during plastic deformations) in the same manner as models of multicomponent fluids. In particular, the model is able to create interfaces which were not present initially.The model is thermodynamically compatible: it verifies the entropy inequality. However, a numerical treatment of the model is particularly challenging. Indeed, the model is non-conservative, so a special numerical splitting is proposed to overcome this difficulty. The numerical algorithm contains two relaxation procedures. One of them is physical and is related to the plastic relaxation mechanism (relaxation toward the yield surface). The second one is numerical. It consists in replacing the algebraic equation expressing a mechanical equilibrium between components by a partial differential equation with a short relaxation time. The numerical method was tested in 1D case (Wilkins’ flying plate problem), 2D plane case (impact of a projectile on a plate) and axisymmetrical case (Taylor test problem, impact with penetration effects, etc.). Numerical examples show the ability of the model to deal with real physical phenomena.  相似文献   

7.
8.
We present a block preconditioner for the efficient solution of the linear systems that arise when employing Newton’s method to solve monolithically-coupled large-displacement fluid–structure interaction problems in which the update of the moving fluid mesh is performed by the equations of large-displacement elasticity. Following a theoretical analysis of the preconditioner, we propose an efficient implementation that yields a solver with near-optimal computational cost, in the sense that the time for the solution of the linear systems scales approximately linearly with the number of unknowns. We evaluate the performance of the preconditioner in selected two- and three-dimensional test problems.  相似文献   

9.
New shapes of silicon microelements which can be partially situated outside the wafer plane can be created by the combination of wet anisotropic etching and plastic deformation at high temperatures. Therefore new applications become possible. In order to characterize the plastic behaviour of the silicon microelements bending tests in the 3-point manner were carried out at monocrystalline, differently orientated beams with variation of temperature, bending rate and maximum bending. Additionally the fracture strength at room temperature of deformed and undeformed beams was determined. The dislocation content introduced during the deformation was analysed by the etch pit technique. The deformation is characterized by the formation of dislocations, a pronounced yield point effect, and an orientation-dependent strengthening. The yield points depend strongly on temperature. Because of the strong dependence on the deformation parameters it is possible to create the same amount of irreversible deformation at different stages of the stress–bend diagrams resulting in different dislocation contents and therefore different properties. The analysis of the fracture strength values by means of the Weibull statistics shows a slightly decreased average fracture strength of the deformed material in comparison to the undeformed silicon but a strongly increased Weibull modulus. Received: 22 September 1998 / Accepted: 29 January 1999 / Published online: 28 April 1999  相似文献   

10.
A numerical scheme for treating fluid–land boundaries in inviscid shallow water flows is derived that conserves the domain-summed mass, energy, vorticity, and potential enstrophy in domains with arbitrarily shaped boundaries. The boundary scheme is derived from a previous scheme that conserves all four domain-summed quantities only in periodic domains without boundaries. It consists of a method for including land in the model along with evolution equations for the vorticity and extrapolation formulas for the depth at fluid–land boundaries. Proofs of mass, energy, vorticity, and potential enstrophy conservation are given. Numerical simulations are carried out demonstrating the conservation properties and accuracy of the boundary scheme for inviscid flows and comparing its performance with that of four alternative boundary schemes. The first of these alternatives extrapolates or finite-differences the velocity to obtain the vorticity at boundaries; the second enforces the free-slip boundary condition; the third enforces the super-slip condition; and the fourth enforces the no-slip condition. Comparisons of the conservation properties demonstrate that the new scheme is the only one of the five that conserves all four domain-summed quantities, and it is the only one that both prevents a spurious energy cascade to the smallest resolved scales and maintains the correct flow orientation with respect to an external forcing. Comparisons of the accuracy demonstrate that the new scheme generates vorticity fields that have smaller errors than those generated by any of the alternative schemes, and it generates depth and velocity fields that have errors about equal to those in the fields generated by the most accurate alternative scheme.  相似文献   

11.
Present work highlights liquid scintillation inclusion techniques as a tool for simultaneous determination of gross α and β activities in composite samples. This preliminary study comprises a preamble exercise to check whether Automatic Efficiency Control (AEC) and knee point inclusion techniques which are conventionally used for analysis of two β-emitting radio-nuclides in a mixture, can be implemented for quantification of gross α and β activities in composite samples. In inclusion techniques, two counting regions are set such that there are spill-up and spill-down of pulse events in each region from both types of radio-nuclides. AEC which is built-in feature in Packard Tri-Carb 2900 TR Liquid Scintillation Counter (LSC) provides automatic counting region adjustments for single and dual label samples according to the degree of quench present in sample. While knee point inclusion technique requires manual Lower Level (LL) and Upper Level (UL) discriminator setting to define two counting regions. In the present study, α/β spiked composite samples were treated as dual label samples with α and β radio-nuclides as two distinct entities contributing to the gross activities and analyzed employing AEC and knee point inclusion techniques. Instrument discriminator settings and regions of interest (ROI) were evaluated to determine optimum counting conditions for both the techniques. Three sets of pure alpha and pure beta standards simulating the activity concentrations of real samples in terms of α/β activity ratios were used to calibrate LSC. Calibration methodology for Packard Tri-Carb 2900 TR LSC with respect to the above measurements using 241Am, 36Cl and 90Sr/90Y calibration standards is explained in detail. The practicability and working performance of these techniques was checked by the validation trials with spiked synthetic samples covering range of α/β activity ratios from 1:1 to 1:50 and 50:1. Procedures have been tested by comparison with, established PSA technique and repeatability has been evaluated.  相似文献   

12.
Amyloid precursor protein (APP) is the precursor protein to amyloid β (Aβ), the main constituent of senile plaques in Alzheimer's disease (AD). Endogenous Aβ peptides reflect the APP processing, and greater knowledge of different APP degradation pathways is important to understand the mechanism underlying AD pathology. When one analyzes longer Aβ peptides by low-energy collision-induced dissociation tandem mass spectrometry (MS/MS), mainly long b-fragments are observed, limiting the possibility to determine variations such as amino acid variants or post-translational modifications (PTMs) within the N-terminal half of the peptide. However, by using electron capture dissociation (ECD), we obtained a more comprehensive sequence coverage for several APP/Aβ peptide species, thus enabling a deeper characterization of possible variants and PTMs. Abnormal APP/Aβ processing has also been described in the lysosomal storage disease Niemann-Pick type C and the major large animal used for studying this disease is cat. By ECD MS/MS, a substitution of Asp7 → Glu in cat Aβ was identified. Further, sialylated core 1 like O-glycans at Tyr10, recently discovered in human Aβ (a previously unknown glycosylation type), were identified also in cat cerebrospinal fluid (CSF). It is therefore likely that this unusual type of glycosylation is common for (at least) species belonging to the magnorder Boreoeutheria. We here describe a detailed characterization of endogenous APP/Aβ peptide species in CSF by using an online top-down MS-based method.  相似文献   

13.
Thin- layer material based on nanostructured Al2O3 of the surface density 5 mg/cm2 was obtained. The material is characterized by high OSL and TL yields comparable with those for TLD-500 which is one of the leaders among the TL and OSL detectors. The dose response, fading and dependence of TL yield on heating rate was studied. It is established that high luminescence yield of the samples under study correlates with the content of anion vacancies and γ-phase of Al2O3. The data for time-resolved luminescent spectroscopy are presented, which evidence for possible correlation between high TL and OSL activity and the F-type centers. It is noted that the material needs to be modified for successful use in dosimetry. In addition further studies to decrease the contribution of unstable (at 300 К) components to OSL and TL yields are required.  相似文献   

14.
A new secondary isotopic reference material has been prepared from Puerto Rico precipitation, which was filtered, homogenised, loaded into glass ampoules, sealed with a torch, autoclaved to eliminate biological activity, and calibrated by dual-inlet isotope-ratio mass spectrometry. This isotopic reference material, designated as USGS48, is intended to be one of two isotopic reference waters for daily normalisation of stable hydrogen (δ2H) and stable oxygen (δ18O) isotopic analysis of water with a mass spectrometer or a laser absorption spectrometer. The δ2H and δ18O values of this reference water are?2.0±0.4 and?2.224±0.012 ‰, respectively, relative to Vienna Standard Mean Ocean Water on scales normalised such that the δ2H and δ18O values of Standard Light Antarctic Precipitation reference water are?428 and?55.5 ‰, respectively. Each uncertainty is an estimated expanded uncertainty (U=2uc) about the reference value that provides an interval that has about a 95 % probability of encompassing the true value. This isotopic reference water is available by the case of 144 glass ampoules containing 5 mL of water in each ampoule.  相似文献   

15.
The feasibility of using subharmonic aided pressure estimation (SHAPE) to noninvasively estimate interstitial fluid pressure (IFP) was studied. In vitro, radiofrequency signals, from 0.2 ml/l of Definity (Lantheus Medical Imaging, N Billerica, MA) were acquired within a water-tank with a Sonix RP ultrasound scanner (Analogic Ultrasound, Richmond, BC, Canada; fT/R = 6.7/3.35 MHz and fT/R = 10/5 MHz) and the subharmonic amplitudes of the signals were compared over 0–50 mmHg. In vivo, five swine with naturally occurring melanomas were studied. Subharmonic signals were acquired from tumours and surrounding tissue during infusion of Definity and compared to needle-based pressure measurements. Both in vitro and in vivo, an inverse linear relationship between hydrostatic pressure and subharmonic amplitude was observed with r2 = 0.63–0.95; p < 0.05, maximum amplitude drop 11.36 dB at 10 MHz and −8 dB, and r2 as high as 0.97; p < 0.02 (10 MHz and −4/−8 dB most promising), respectively, indicating that SHAPE may be useful in monitoring IFP.  相似文献   

16.
In this study, a hybrid film bio-nanocomposite material was developed based on the graphene oxide/fungal hyphae (GO-FH) interaction. The developed GO-FH bio-nanocomposite material was used for the removal of hexavalent chromium from aqueous solution. The GO-FH bio-nanocomposite material was prepared by ultrasonic irradiation technique. The synthesized GO-FH bio-nanocomposite material was characterized by XRD, FT-IR, SEM, TEM and TGA. The adsorption experiments were carried out in batch mode to optimize parameters such as pH, adsorbent dosage, initial Cr(VI) ion concentration, contact time and shaking speed. The results indicated that the adsorption of Cr(VI) onto GO-FH bio-nanocomposite material was pH dependant, with the maximum adsorption capacity of 212.76 mg/g occurred at pH 2.0. The adsorption studies followed, Langmuir isotherm and pseudo second order kinetic model. Findings demonstrates that GO-FH bio-nanocomposite material exhibited excellent regeneration performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号