首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Present study is devoted on the efficient application of Sn (O, S)-NPs -AC for simultaneous sonicated accelerated adsorption of some dyes from single and multi-components systems. Sn (O, S) nanoparticles characterization by FESEM, EDX, EDX mapping and XRD revel its nano size structure with high purity of good crystallinity. Present adsorbent due to its nano spherical shape particles with approximate diameter of 40–60 nm seems to be highly effective in this regard. The effects of five variables viz. pH (3.5–9.5), 0.010–0.028 g of adsorbent and 0.5–6.5 min mixing by sonication is good and practical conditions for well and expected adsorption of MB and CV over concentration range of 3–15 mg L−1. Combination of response surface methodology (RSM) based on central composite design (CCD) and subsequent of analysis of variance (ANOVA) and t-test statistics were used to test the significance of the independent variables and their interactions. Regression analysis reveal that experimental data with high repeatability and efficiency well represented by second-order polynomial model with coefficient of determination value of 0.9988 and 0.9976 for MB and CV, respectively following conditions like pH 8.0, 0.016 g adsorbent, 15 mg L−1 of both dyes 4 min sonication time is proportional with achievement of experimental removal percentage of 99.80% of MB and 99.87% of CV in batch experiment. Evaluation and estimation of adsorption data with Langmuir and Freundlich isotherm well justify the results based on their correlation coefficient and error analysis confirm that Langmuir model is good model with adsorption capacity of 109.17 and 115.34 mg g−1 in single system and 95.69 and 102.99 mg g−1 in binary system for MB and CV, respectively. MB and CV kinetic and rate of adsorption well fitted by pseudo-second order equation both in single and binary systems and experimental results denote more and favorable adsorption of CV than respective value in single system. The pseudo-second-order rate constant k2 in binary system larger than single system.  相似文献   

2.
The nitrogen (N) doped Ti4O7 photocatalyst was prepared from urea as a nitrogen source by a microwave method. The resulting photocatalyst was characterized by X-ray diffraction (XRD), Field Emission Scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), UV–visible diffuse reflectance spectroscopy (UV–Vis DRS) and UV–vis spectroscopy (UV–Vis). 0.1 M N doped Ti4O7 photocatalyst exhibited methylene blue decomposition efficiency of 100% which was prepared by microwave treatment for above 30 min. Rate constant was found to be 0.028910 min−1 in the first order kinetic.  相似文献   

3.
This paper focuses on the finding best operational conditions using response surface methodology (RSM) for Rhodamine123 (R123) and Disulfine blue (DSB) dyes removal by ultrasound assisted adsorption onto Au-Fe3O4 nanoparticles loaded on activated carbon (Au-Fe3O4 NPs-AC). The influences of variables such as initial R123 (X1) and DSB concentration (X2), pH (X3), adsorbent mass (X4) and sonication time (X5) on their removal were investigated by small central composite design (CCD) under response surface methodology. The significant variables and the possible interactions among variables were investigated and estimated accordingly. The best conditions were set as: 4 min, 4.0, 0.025 g, 13.5 and 26.5 mg L−1 for sonication time, pH, adsorbent weight, initial R123 and DSB concentration, respectively. At above conditions, the adsorption equilibrium and kinetic follow the Langmuir isotherm and pseudo-second-order kinetic model, respectively. The maximum monolayer capacity (Qmax) of 71.46 and 76.38 mg g−1 for R123 and DSB show sufficiency of model for well presentation of experimental data.  相似文献   

4.
《Ultrasonics sonochemistry》2014,21(4):1358-1365
Ultrasonic-assisted heterogeneous Fenton reaction was used for degradation of nitrobenzene (NB) at neutral pH conditions. Nano-sized oxides of α-Fe2O3 and CuO were prepared, characterized and tested in degradation of NB (10 mg L−1) under sonication of 20 kHz at 25 °C. Complete degradation of NB was effected at pH 7 in presence of 10 mM H2O2 after 10 min of sonication in presence of α-Fe2O3 (1.0 g L−1), (k = 0.58 min−1) and after 25 min in case of CuO (k = 0.126 min−1). α-Fe2O3 showed also effective degradation under the conditions of 0.1 g L−1 oxide and 5.0 mM of H2O2, even though with a lower rate constant (0.346 min−1). Sonication plays a major role in enhancing the production of hydroxyl radicals in presence of solid oxides. Hydroxyl radicals-degradation pathway is suggested and adopted to explain the differences noted in rate constants recorded on using different oxides.  相似文献   

5.
《Current Applied Physics》2010,10(6):1422-1426
Mesoporous Co3O4 microspheres with unique crater-like morphology were obtained by utilizing the mesoporous silica material MCM-41 as a template. The analysis results of N2 adsorption–desorption measurement indicate that the product has a large Brunauer–Emmett–Teller (BET) surface area of 60 m2 g−1 and a narrow pore size distribution centering around 3.7 nm. Its electrochemical properties were investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements. The findings reveal that this novel morphology material has a smaller inner resistance of about 0.4 Ω and a higher onset frequency of 550 Hz. This material can provide a high specific capacitance of 102 F g−1 and a large capacity retention of 74% in 500 continuous cycles test at a sweep rate of 3 mV s−1. More significantly, the mass loading of electroactive species can reach as large as 2 mg cm−2, which is one order of magnitude larger than common amount used.  相似文献   

6.
γ-Fe2O3 nanoparticles were synthesized and loaded on activated carbon. The prepared nanomaterial was characterized by field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), Fourier transforms infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). The γ-Fe2O3 nanoparticle-loaded activated carbon (γ-Fe2O3-NPs-AC) was used as novel adsorbent for the ultrasonic-assisted removal of methylene blue (MB) and malachite green (MG). Response surface methodology and artificial neural network were applied to model and optimize the adsorption of the MB and MG in their individual and binary solutions followed by the investigation on adsorption isotherm and kinetics. The individual effects of parameters such as pH, mass of adsorbent, ultrasonication time as well as MB and MG concentrations in addition to the effects of their possible interactions on the adsorption process were investigated. The numerical optimization revealed that the optimum adsorption (>99.5% for each dye) is obtained at 0.02 g, 15 mg L−1, 4 min and 7.0 corresponding to the adsorbent mass, each dye concentration, sonication time and pH, respectively. The Freundlich, Langmuir, Temkin and Dubinin–Radushkevich isotherms were studied. The Langmuir was found to be most applicable isotherm which predicted maximum monolayer adsorption capacities of 195.55 and 207.04 mg g−1 for the adsorption of MB and MG, respectively. The pseudo-second order model was found to be applicable for the adsorption kinetics. Blank experiments (without any adsorbent) were run to investigate the possible degradation of the dyes studied in presence of ultrasonication. No dyes degradation was observed.  相似文献   

7.
A method based on application of ZnO nanorods loaded on activated carbon (ZnO-NRs-AC) for adsorption of Bromocresol Green (BCG) and Eosin Y (EY) accelerated by ultrasound was described. The present material was synthesized under ultrasound assisted wet-chemical method and subsequently was characterized by FE-SEM, TEM, BET and XRD analysis. The extent of contribution of conventional variables like pH (2.0–10.0), BCG concentration (4–20 mg L−1), EY concentration (3–23 mg L−1), adsorbent dosage (0.01–0.03 g), sonication time (1–5 min) and centrifuge time (2–6 min) as main and interaction part were investigated by central composite design under response surface methodology. Analysis of variance (ANOVA) was adapted to experimental data and guide the best operational conditions mass by set at 6.0, 9 mg L−1, 10 mg L−1, 0.02 g, 4 and 4 min for pH, BCG concentration, EY concentration, adsorbent dosage, sonication and centrifuge time, respectively. At these specified conditions dye adsorption efficiency was higher than 99.5%. The suitability and well prediction of optimum point was tested by conducting five experiments and respective results revel that RSD% was lower than 3% and high quality of fitting was confirmed by t-test. The experimental data were best fitted in Langmuir isotherm equation and the removal followed pseudo second order kinetics. The experimentally obtained maximum adsorption capacities were estimated as 57.80 and 61.73 mg g−1 of ZnO-NRs-AC for BCG and EY respectively from binary dye solutions. The mechanism of removal was explained by boundary layer diffusion via intraparticle diffusion.  相似文献   

8.
Magnetic γ-Fe2O3 nanoparticles modificated by bis(5-bromosalicylidene)-1,3-propandiamine (M-γ-Fe2O3-NPs-BBSPN) and characterized by field emission scanning electron microscopy (FE-SEM), Fourier transforms infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). This modified compound as novel adsorbent was applied for the ultrasound-assisted removal of Pb2+ ion in combination with flame atomic absorption spectroscopy (FAAS). The influences of the effective parameters including initial Pb2+ ion concentration, pH, adsorbent mass and ultrasound time were optimized by central composite design (CCD). Maximum removal percentage of Pb2+ ion which obtained at 25 mg L1 of Pb2+, 25 mg of adsorbent and 4 min mixing with sonication at pH 6.0. The precision of the equation obtained by CCD was confirmed by the analysis of variance and calculation of correlation coefficient relating the predicted and the experimental values of removal percentage of Pb2+ ion. The kinetic and isotherm of ultrasound-assisted removal of Pb2+ ion was well described by second-order kinetic and Langmuir isotherm model with maximum adsorption capacity of 163.57 mg g1.  相似文献   

9.
《Ultrasonics sonochemistry》2014,21(3):1244-1257
In this study, the effects of some additives [manganese (III) oxide (Mn3O4), Cu+2, Fe0 and potassium iodate (KIO3)] and some radical scavengers [sodium carbonate (Na2CO3), perfluorohexane (C6F14) and t-butyl alcohol (C4H10O)] on the sonication of olive mill effluent wastewater (OMW) were investigated since the wastewaters of this industry are removed with low efficiencies. The maximum total phenol and total aromatic amines (TAAs) removal efficiencies were 88% and 79%, respectively, at 60 °C with only 150 min sonication. The maximum phenol removal was found as 98% with 19 mg L−1 perfluorohexane and 5 mg L−1 Fe0 while the maximum TAAs removal was 99% with 16 mg L−1 KIO3. Catechol, tyrosol, quercetin, caffeic acid, 4-methyl catechol, 2-phenylphenol (2-PHE) and 3-phenyl phenol (3-PHE) were detected as phenol intermediates while trimethlyaniline, aniline, o-toluidine, o-anisidine, dimethylaniline, ethylbenzene and durene were identified as TAAs in the OMW. The maximum acute toxicity removals were 96% and 99% in Vibrio fischeri and Daphnia magna, respectively. Total phenol, TAAs and the toxicity in an OMW were removed efficiently and cost-effectively through sonication.  相似文献   

10.
Magnetite (Fe3O4 nanoparticles (NPs)) HKUST-1 metal organic framework (MOF) composite as a support was used for surface imprinting of gallic acid imprinted polymer (HKUST-1-MOF-Fe3O4-GA-MIP) using vinyltrimethoxysilane (VTMOS) as the cross-linker. Subsequently, HKUST-1-MOF-Fe3O4-NPs-GA-MIP characterized by FT-IR, XRD and FE-SEM analysis and applied for fast and selective and sensitive ultrasound assisted dispersive magnetic solid phase microextraction of gallic acid (GA) by UV–Vis (UA-DMSPME-UV-Vis) detection method. Plackett–Burman design (PBD) and central composite design (CCD) according to desirability function (DF) indicate the significant variables among the extraction factors vortex (mixing) time (min), sonication time (min), temperature (°C), eluent volume (L), pH and HKUST-1-MOF-Fe3O4-NPs-GA-MIP mass (mg) and their contribution on the response. Optimum conditions and values correspond to pH, HKUST-1-MOF-Fe3O4-NPs-GA-MIP mass, sonication time and the eluent volume were set as follow 3.0, 1.6 mg, 4.0 min and 180 μL, respectively. The average recovery (ER%) of GA was 98.13% with desirability of 0.997, while the present method has best operational performance like wide linear range 8–6000 ng mL−1 with a Limit of detection (LOD) of 1.377 ng mL−1, limit of quantification (LOQ) 4.591 ng mL−1 and precision (<3.50% RSD). The recovery of GA in urine, human plasma and water samples within the range of 92.3–100.6% that strongly support high applicability of present method for real samples analysis, which candidate this method as promise for further application.  相似文献   

11.
Ultrasound-assisted dispersive solid phase microextraction followed by UV–vis spectrophotometer (UA-DSPME-UV–vis) was designed for extraction and preconcentration of nicotinamide (vitamin B3) by HKUST-1 metal organic framework (MOF) based molecularly imprinted polymer (MIP). This new material was characterized by FTIR and FE-SEM techniques. The preliminary Plackett–Burman design was used for screening and subsequently the central composite design justifies significant terms and possible construction of mathematical equation which give the individual and cooperative contribution of variables like HKUST-1-MOF-NA-MIP mass, sonication time, temperature, eluent volume, pH and vortex time. Accordingly the optimum condition was set as: 2.0 mg HKUST-1-MOF-NA-MIP, 200 μL eluent and 5.0 min sonication time in center points other variables were determined as the best conditions to reach the maximum recovery of the analyte. The UA-DSPME-UV–vis method performances like excellent linearity (LR), limits of detection (LOD), limits of quantification of 10–5000 μg L−1 with R2 of 0.99, LOD (1.96 ng mL−1), LOQ (6.53 μg L−1), respectively show successful and accurate applicability of the present method for monitoring analytes with within- and between-day precision of 0.96–3.38%. The average absolute recoveries of the nicotinamide extracted from the urine, milk and water samples were 95.85–101.27%.  相似文献   

12.
A simple method for synthesis of gold nanoparticles (AuNPs) using Aspergillum sp. WL-Au was presented in this study. According to UV–vis spectra and transmission electron microscopy images, the shape and size of AuNPs were affected by different parameters, including buffer solution, pH, biomass and HAuCl4 concentrations. Phosphate sodium buffer was more suitable for extracellular synthesis of AuNPs, and the optimal conditions for AuNPs synthesis were pH 7.0, biomass 100 mg/mL and HAuCl4 3 mM, leading to the production of spherical and pseudo-spherical nanoparticles. The biosynthesized AuNPs possessed excellent catalytic activities for the reduction of 2-nitrophenol, 3-nitrophenol, 4-nitrophenol, o-nitroaniline and m-nitroaniline in the presence of NaBH4, and the catalytic rate constants were calculated to be 6.3×10−3 s−1, 5.5×10−3 s−1, 10.6×10−3 s−1, 8.4×10−3 s−1 and 13.8×10−3 s−1, respectively. The AuNPs were also able to catalyze the decolorization of various azo dyes (e.g. Cationic Red X-GRL, Acid Orange II and Acid scarlet GR) using NaBH4 as the reductant, and the decolorization rates reached 91.0–96.4% within 7 min. The present study should provide a potential candidate for green synthesis of AuNPs, which could serve as efficient catalysts for aromatic pollutants degradation.  相似文献   

13.
《Solid State Ionics》2006,177(5-6):549-558
Perovskite-type LaGa0.65Mg0.15Ni0.20O3−δ exhibiting oxygen transport comparable to that in K2NiF4-type nickelates was characterized as a model material for ceramic membrane reactors, employing mechanical tests, dilatometry, oxygen permeability and faradaic efficiency measurements, thermogravimetry (TG), and determination of the total conductivity and Seebeck coefficient in the oxygen partial pressure range from 10 15 Pa to 40 kPa. Within the phase stability domain which is similar to La2NiO4+δ, the defect chemistry of LaGa0.65Mg0.15Ni0.20O3−δ can be adequately described by the ideal solution model with oxygen vacancies and electron holes to be the only mobile defects, assuming that Ni2+ may provide two energetically equivalent sites for hole location. This assumption is in agreement with the density of states, estimated from thermopower, and the coulometric titration and TG data suggesting Ni4+ formation in air at T < 1150 K. The hole conductivity prevailing under oxidizing conditions occurs via small-polaron mechanism as indicated by relatively low, temperature-activated mobility. The ionic transport increases with vacancy concentration on reducing p(O2) and becomes dominant at oxygen pressures below 10 7–10 5 Pa. The average thermal expansion coefficients in air are 11.9 × 10 6 and 18.4 × 10 6 K 1 at 370–850 and 850–1270 K, respectively. The chemical strain of LaGa0.65Mg0.15Ni0.20O3−δ ceramics at 1073–1123 K, induced by the oxygen partial pressure variations, is substantially lower compared to perovskite ferrites. The flexural strength determined by 3-point and 4-point bending tests is 167–189 MPa at room temperature and 85–97 MPa at 773–1173 K. The mechanical properties are almost independent of temperature and oxygen pressure at p(O2) = 1–2.1 × 104 Pa and 773–1173 K.  相似文献   

14.
Transparent glass–ceramics containing zinc–aluminum spinel (ZnAl2O4) nanocrystals doped with tetrahedrally coordinated Co2+ ions were obtained by the sol–gel method for the first time. The gels of composition SiO2–Al2O3–ZnO–CoO were prepared at room temperature and heat-treated at temperature ranging 800–950 °C. When the gel samples were heated up to 900 °C, ZnAl2O4 nanocrystals were precipitated. Co2+ ions were located in tetrahedral sites in ZnAl2O4 nanocrystals. X-ray diffraction analysis shows that the crystallite sizes of ZnAl2O4 crystal become large with the heat-treatment temperature and time, and the crystallite diameter is in the range of 10–15 nm. The dependence of the absorption and emission spectra of the samples on heat-treatment temperature were presented. The difference in the luminescence between Co2+ doped glass–ceramic and Co2+ doped bulk crystal was analysed. The crystal field parameter Dq of 423 cm−1 and the Racah parameters B of 773 cm−1 and C of 3478.5 cm−1 were calculated for tetrahedral Co2+ ions.  相似文献   

15.
Fe3O4/hydroxyapatite/graphene quantum dots (Fe3O4/HAP/GQDs) nanocomposite was synthesized and used as a novel magnetic adsorbent. This nanocomposite was characterized using scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, and magnetization property. The Fe3O4/HAP/GQDs was applied to pre-concentrate copper residues in Thai food ingredients (so-called “Tom Yum Kung”) prior to determination by inductively coupled plasma-atomic emission spectrometry. Based on ultrasound-assisted extraction optimization, various parameters affecting the magnetic solid-phase extraction, such as solution pH, amount of magnetic nanoparticles, adsorption and desorption time, and type of elution solvent and its concentration were evaluated. Under optimal conditions, the linear range was 0.05–1500 ng mL−1 (R2 > 0.999), limit of detection was 0.58 ng mL−1, and limit of quantification was 1.94 ng mL−1. The precision, expressed as the relative standard deviation of the calibration curve slope (n = 5), for intra-day and inter-day analyses was 0.87% and 4.47%, respectively. The recovery study of Cu for real samples was ranged between 83.5% and 104.8%. This approach gave the enrichment factor of 39.2, which guarantees trace analysis of Cu residues. Therefore, Fe3O4/HAP/GQDs can be a potential and suitable candidate for the pre-concentration and separation of Cu from food samples. It can easily be reused after treatment with deionized water.  相似文献   

16.
Highly conductive, unsophisticated and easy to be obtained physical exfoliated graphite (PHG) supporting well dispersed magnetite, Fe3O4/PHG nanocomposite, has been prepared by a one-step chemical strategy and physico-chemical characterized. The nanocomposite, favoured by the a-polar nanoparticles (NPs) capping, results in a self-assembled monolayer of monodispersed Fe3O4, covering perfectly the hydrophobic surfaces of PHG. The nanocomposite as an electrode material was fabricated into a supercapacitor and characterized by cyclic voltammetry (CV) and galvanostatic charge–discharge measurements. It shows, after a suitable annealing, significant electrochemical properties (capacitance value of 787 F/g at 0.5 A g−1 and a Fe3O4/PHG weight ratio of 0.31) and good cycling stability (retention 91% after 30,000 cycles). Highly monodispersed very fine Fe3O4 NPs, covered by organic chains, have been also synthesized. The high surface area Fe3O4 NPs, after washing to leave a low content of organic chains able to avoid aggregation without excessively affecting the electrical properties of the material, exhibit remarkable pseudocapacitive activities, including the highest specific capacitance over reported for Fe3O4 (300 F/g at 0.5 A g−1).  相似文献   

17.
《Solid State Ionics》2006,177(26-32):2285-2289
Oxygen-ionic and electronic transport in dense (SrFe)1−x(SrAl2)xOz composites, consisting of strontium-deficient Sr(Fe,Al)O3-δ and SrAl2O4 phases, is determined by the properties of perovskite-like solid solution. Increasing the content of SrAl2O4, with a total conductivity as low as 5 × 10 7   10 S × cm 1 at 973–1273 K in air, results in the gradual decrease of the partial conductivities, but also enables the suppression of thermal expansion. Compared to single-phase SrFe1−xAlxO3-δ, (SrFe)1−x(SrAl2)xOz composites exhibit enhanced thermomechanical properties, while the oxygen permeability of these materials has similar values. The composite membranes exhibit stable performance under air/(H2–H2O–N2) and air/(CH4–He) gradients at 973–1173 K. The oxidation of dry methane by oxygen permeating through (SrFe)0.7(SrAl2)0.3Oz results in dominant total oxidation, suggesting the necessity to incorporate a reforming catalyst into the ceramic reactors for natural gas conversion.  相似文献   

18.
Activated carbon (AC) composite with HKUST-1 metal organic framework (AC–HKUST-1 MOF) was prepared by ultrasonically assisted hydrothermal method and characterized by FTIR, SEM and XRD analysis and laterally was applied for the simultaneous ultrasound-assisted removal of crystal violet (CV), disulfine blue (DSB) and quinoline yellow (QY) dyes in their ternary solution. In addition, this material, was screened in vitro for their antibacterial actively against Methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa (PAO1) bacteria. In dyes removal process, the effects of important variables such as initial concentration of dyes, adsorbent mass, pH and sonication time on adsorption process optimized by Taguchi approach. Optimum values of 4, 0.02 g, 4 min, 10 mg L−1 were obtained for pH, AC–HKUST-1 MOF mass, sonication time and the concentration of each dye, respectively. At the optimized condition, the removal percentages of CV, DSB and QY were found to be 99.76%, 91.10%, and 90.75%, respectively, with desirability of 0.989. Kinetics of adsorption processes follow pseudo-second-order model. The Langmuir model as best method with high applicability for representation of experimental data, while maximum mono layer adsorption capacity for CV, DSB and QY on AC–HKUST-1 estimated to be 133.33, 129.87 and 65.37 mg g−1 which significantly were higher than HKUST-1 as sole material with Qm to equate 59.45, 57.14 and 38.80 mg g−1, respectively.  相似文献   

19.
The present study the ultrasound assisted adsorption of dyes in single system onto Fe3O4 magnetite nanoparticles loaded on activated carbon (Fe3O4-MNPs-AC) was described following characterization and identification of this adsorbent by conventional techniques likes field emission scanning electron microscopy, transmission electron microscopy, particle-size distribution, X-ray diffraction and Fourier transform infrared spectroscopy. A central composite design in conjunction with a response surface methodology according to f-test and t-test for recognition and judgment about significant term led to construction of quadratic model which represent relation among responses and effective terms. This model has unique ability to predict adsorption data behavior over a large space around central and optimum point. Accordingly Optimum conditions for well and quantitative removal of present dyes was obtained best operation and conditions: initial SY, MB and EB dyes concentration of 15, 15 and 25 mg L−1, 4.0, 6.0 and 5.0 of pH, 360, 360 and 240 s sonication time and 0.04, 0.03 and 0.032 g of Fe3O4-MNPs-AC. Replication of similar experiment (N = 5) guide that average removal percentage of SY, MB and EB were found to be 96.63 ± 2.86%, 98.12 ± 1.67% and 99.65 ± 1.21% respectively. Good agreement and closeness of Predicted and experimental result and high adsorption capacity of dyes in short time strongly confirm high suitability of present method for waste water treatment, while easy separation of present nanoparticle and its good regeneration all support good applicability of Fe3O4-MNPs-AC for waste water treatment. The kinetic study can be represented by combination of pseudo second-order and intraparticle diffusion. The obtained maximum adsorption capacities correspond to Langmuir as best model for representation of experimental data correspond to dyes adsorption onto Fe3O4-MNPs-AC were 76.37, 78.76 and 102.00 mg g−1 for SY, MB and EB, respectively. In addition, the performance comparison of ultrasound-assisted, magnetic stirrer assisted and vortex assisted adsorption methods demonstrates that ultrasound is an effective and good choice for facilitation of adsorption process via. Compromise of simple and facile diffusion.  相似文献   

20.
《Solid State Ionics》2006,177(26-32):2407-2411
Electrical conduction of Sr-doped LaP3O9 ([Sr]/{[La] + [Sr]} = 2–10 mol%) was investigated under 0.4–5 kPa of p(H2O) and 0.01–100 kPa of p(O2) or 0.3–3 kPa of p(H2) at 573–973 K. Sr-doped LaP3O9 showed apparent H/D isotope effect on conductivity regardless of the Sr-doping level under both H2O/O2 oxidizing and H2/H2O reducing conditions at investigated temperatures. Conductivities of the material were almost independent of p(O2) and p(H2O). These results demonstrated that the Sr-doped LaP3O9 exhibited protonic conduction under wide ranges of p(O2), p(H2O) and temperature. The conductivity of the Sr-doped LaP3O9 increased with increasing Sr concentration up to its solubility limit, ca. 3 mol%, while the further Sr-doping slightly degraded the conductivity. These indicate that Sr2+ substitution for La3+ leads to proton dissolution into the material and induced protonic conduction. Conductivities of the 3 mol% Sr-doped sample were 2 × 10- 6–5 × 10 4 S cm 1 at 573–973 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号