首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measurements of pH in single-phase cytochrome c suspensions are reported. The pH, as determined by a glass electrode, has a fixed value. With the addition of salt, the supposedly fixed pH changes strongly. The pH depends on salt type and concentration and follows a Hofmeister series. A theoretical interpretation is given that provides insights into such Hofmeister effects. These occur generally in protein solutions. While classical electrostatic models provide partial understanding of such trends in protein solutions, they fail to explain the observed ion specificity. Such models neglect electrodynamic fluctuation (dispersion) forces acting between ions and proteins. We use a Poisson-Boltzmann cell model that takes these ionic dispersion potentials between ions and proteins into account. The observed ion specificity can then be accounted for. Proteins act as buffers that display similar salt-dependent pH trends not previously explained.  相似文献   

2.
Approaches to hydration, old and new: Insights through Hofmeister effects   总被引:1,自引:0,他引:1  
Hydration effects in colloidal interactions or problems involving electrolytes are usually taken care of by effective electrostatic potentials that subsume notions like hydrated ion size, Gurney potentials, soft and hard, chaotropic and cosmotropic ions, and inner and outer Helmholtz planes. Quantum fluctuation (dispersion) forces between ions and between ions and surfaces are missing from classical theories, at least not explicit in standard approaches to hydration. This paper outlines an evolving back-to-basics approach that allows these ion specific forces to be included in theories quantitatively. In this approach ab initio quantum mechanics is used to calculate dynamic polarisabilities of ions and to quantify bare ion radii. The ionic dispersion potentials between ions, and between ions and surfaces in water can then be given explicit analytic form from an extension of Lifshitz theory. They are included in the theory along with electrostatic potentials. In a first stage the primitive (continuum solvent) model provides a skeletal theory on which to build in hydration. Extension of the ab initio calculations to include “dressed” ions, i.e. water hydration shells for cosmotropic ions, quadrupolar and octupolar polarisability contributions and; for colloids, allowance for a surface hydration layer, permits quantification of Hofmeister effects and Gurney potentials. With these extensions, primary hydration forces (short range repulsion) arise due to an interplay between surface hydration layers and specific ion interactions. Apparent longer range “secondary hydration forces” are shown to be a consequence of ion-surface dispersion interactions and are not true “hydration forces”.  相似文献   

3.
Neutron diffraction experiments and molecular dynamics simulations are used to study the structure of aqueous solutions of two electrolytes: guanidinium sulfate (a mild protein conformation stabilizer) and guanidinium thiocyanate (a powerful denaturant). The MD simulations find the unexpected result that in the Gdm2SO4 solution the ions aggregated into mesoscopic (nanometer-scale) clusters, while no such aggregation is found in the GdmSCN solution. The neutron diffraction studies, the most direct experimental probe of solution structure, provide corroborating evidence that the predicted very strong ion pairing does occur in solutions of 1.5 m Gdm2SO4 but not in 3 m solutions of GdmSCN. A mechanism is proposed as to how this mesoscopic solution structure affects solution denaturant properties and suggests an explanation for the Hofmeister ordering of these solutions in terms of this ion pairing and the ability of sulfate to reverse the denaturant power of guanidinium.  相似文献   

4.
The thiocyanate (SCN(-)) anion is known as one of the best denaturants, which is also capable of breaking the hydrogen-bond network of water and destabilizing native structures of proteins. Despite prolonged efforts to understand the underlying mechanism of such Hofmeister effects, detailed dynamics of the ions in a highly concentrated solution have not been fully elucidated yet. Here, we used a dispersive IR pump-probe spectroscopic method to study the dependence of vibrational lifetimes and rotational relaxation times of thiocyanate ions on KSCN concentration in D(2)O. The nitrile stretch mode is used as a vibrational probe for dispersed IR pump-probe and FTIR measurements. To avoid possible self-attenuation of the IR pump-probe signal by highly concentrated SCN(-) ions, we added a small amount of (13)C-isotope-labeled thiocyanate ions (S(13)CN(-)) and focused on the excited-state absorption contribution to the IR pump-probe signal of the (13)C-isotope-labeled nitrile stretch mode. Quite unexpectedly, the vibrational lifetime of S(13)CN(-) ions is independent of the total KSCN concentration in the range from 0.46 m (molality) to 11.8 m while the rotational relaxation time of S(13)CN(-) ions is linearly dependent on the total KSCN concentration. By combining the present experimental findings with the fact that the dissolved ions of KSCN salt have a strong tendency to form a large ion cluster in a highly concentrated aqueous solution, we believe that the ion clusters consisting of potassium and thiocyanate ion pairs in D(2)O behave like ionic liquids and the ions inside ion clusters are weakly bound by electrostatic Coulombic interactions. The ability of SCN(-) ions to form ion clusters in aqueous protein solutions seems to be a key to understand the Hofmeister ion effect. We anticipate that the present experimental results provide a clue for further elucidating the underlying mechanism of the Hofmeister ion effects on protein stability in the future.  相似文献   

5.
Entities such as ion distributions and forces between lipid membranes depend on effects due to the intervening salt solution that have not been recognized previously. These specific ion or Hofmeister effects influence membrane fusion. A typical illustrative example is this: measurements of forces between double-chained cationic bilayers adsorbed onto molecularly smooth mica surfaces across different 0.6-2 mM salt solutions have revealed a large degree of ion specificity [Pashley et al. J. Phys. Chem. 1986, 90, 1637]. This has been interpreted in terms of very specific anion "binding" to the adsorbed bilayers, as it would too for micelles and other self-assembled systems. However, we show here that inclusion of nonelectrostatic (NES) or ionic dispersion potentials acting between ions and the two surfaces explains such "ion binding". The observed Hofmeister sequence for the calculated pressure without any direct ion binding is given correctly. This demonstrates the importance of a source of ion specificity that has been ignored. It is due to ionic physisorption caused by attractive NES ionic dispersion potentials. There appear to be some far reaching consequences for interpretations of membrane intermolecular interactions in salt solutions.  相似文献   

6.
Protein solubility studies below the isoelectric point exhibit a direct Hofmeister series at high salt concentrations and an inverse Hofmeister series at low salt concentrations. The efficiencies of different anions measured by salt concentrations needed to effect precipitation at fixed cations are the usual Hofmeister series (Cl(-) > NO(3)(-) > Br(-) > ClO(4)(-) > I(-) > SCN(-)). The sequence is reversed at low concentrations. This has been known for over a century. Reversal of the Hofmeister series is not peculiar to proteins. Its origin poses a key test for any theoretical model. Such specific ion effects in the cloud points of lysozyme suspensions have recently been revisited. Here, a model for lysozymes is considered that takes into account forces acting on ions that are missing from classical theory. It is shown that both direct and reverse Hofmeister effects can be predicted quantitatively. The attractive/repulsive force between two protein molecules was calculated. To do this, a modification of Poisson-Boltzmann theory is used that accounts for the effects of ion polarizabilities and ion sizes obtained from ab initio calculations. At low salt concentrations, the adsorption of the more polarizable anions is enhanced by ion-surface dispersion interactions. The increased adsorption screens the protein surface charge, thus reducing the surface forces to give an inverse Hofmeister series. At high concentrations, enhanced adsorption of the more polarizable counterions (anions) leads to an effective reversal in surface charge. Consequently, an increase in co-ion (cations) adsorption occurs, resulting in an increase in surface forces. It will be demonstrated that among the different contributions determining the predicted specific ion effect the entropic term due to anions is the main responsible for the Hofmeister sequence at low salt concentrations. Conversely, the entropic term due to cations determines the Hofmeister sequence at high salt concentrations. This behavior is a remarkable example of the charge-reversal phenomenon.  相似文献   

7.
It is increasingly being accepted that solvation properties of ions and interfaces (hydration of ions, hydrophobic or hydrophilic character of interfaces) play a fundamental role in ion-surface interaction in water. However, a fundamental understanding of the precise role of solvation in ionic specificity in colloidal systems is still missing, although important progress has been made over the last years. We present in this contribution experimental evidences (including also ions not usually included in specific ion studies) together with Molecular Dynamics (MD) simulations that highlight the importance of the hydration of ions and surfaces in order to understand the origin of ionic specificity. We first show that both surface polarity and ion hydration determine the sorting of ions according to their ability to induce specific effects (the so-called Hofmeister series). We extend these classical series by considering the addition of the inorganic anions IO3, BrO3 and ClO3, which present unusual properties as compared with the ions considered in classical Hofmeister series. We also consider big hydrophobic organic ions such as tetraphenylborate anion (Ph4B) and tetraphenylarsonium cation (Ph4As+) that in the context of the Hofmeister series behave as super-chaotropes ions.  相似文献   

8.
Life as we know it is dependent upon water, or more specifically salty water. Without dissolved ions, the interactions between biological molecules are insufficiently complex to support life. This complexity is intimately tied to the variation in properties induced by the presence of different ions. These specific ion effects, widely known as Hofmeister effects, have been known for more than 100 years. They are ubiquitous throughout the chemical, biological and physical sciences. The origin of these effects and their relative strengths is still hotly debated. Here we reconsider the origins of specific ion effects through the lens of Coulomb interactions and establish a foundation for anion effects in aqueous and non-aqueous environments. We show that, for anions, the Hofmeister series can be explained and quantified by consideration of site-specific electrostatic interactions. This can simply be approximated by the radial charge density of the anion, which we have calculated for commonly reported ions. This broadly quantifies previously unpredictable specific ion effects, including those known to influence solution properties, virus activities and reaction rates. Furthermore, in non-aqueous solvents, the relative magnitude of the anion series is dependent on the Lewis acidity of the solvent, as measured by the Gutmann Acceptor Number. Analogous SIEs for cations bear limited correlation with their radial charge density, highlighting a fundamental asymmetry in the origins of specific ion effects for anions and cations, due to competing non-Coulombic phenomena.

Analysis of ions’ radial charge densities reveals they correlate with many specific ion effects, and provides a new basis to explain and quantify the 130-year-old Hofmeister series for anions.  相似文献   

9.
Specific ion effects on water dynamics and local solvation structure around a peptide are important in understanding the Hofmeister series of ions and their effects on protein stability in aqueous solution. Water dynamics is essentially governed by local hydrogen-bonding interactions with surrounding water molecules producing hydration electric field on each water molecule. Here, we show that the hydration electric field on the OD bond of HOD molecule in water can be directly estimated by measuring its OD stretch infrared (IR) radiation frequency shift upon increasing ion concentration. For a variety of electrolyte solutions containing Hofmeister anions, we measured the OD stretch IR bands and estimated the hydration electric field on the OD bond to be about a hundred MV∕cm with standard deviation of tens of MV∕cm. As anion concentration increases from 1 to 6 M, the hydration electric field on the OD bond decreases by about 10%, indicating that the local H-bond network is partially broken by dissolved ions. However, the measured hydration electric fields on the OD bond and its fluctuation amplitudes for varying anions are rather independent on whether the anion is a kosmotrope or a chaotrope. To further examine the Hofmeister effects on H-bond solvation structure around a peptide bond, we examined the amide I' and II' mode frequencies of N-methylacetamide in various electrolyte D(2)O solutions. It is found that the two amide vibrational frequencies are not affected by ions, indicating that the H-bond solvation structure in the vicinity of a peptide remains the same irrespective of the concentration and character of ions. The present experimental results suggest that the Hofmeister anionic effects are not caused by direct electrostatic interactions of ions with peptide bond or water molecules in its first solvation shell. Furthermore, even though the H-bond network of water is affected by ions, thus induced change of local hydration electric field on the OD bond of HOD is not in good correlation with the well-known Hofmeister series. We anticipate that the present experimental results provide an important clue about the Hofmeister effect on protein structure and present a discussion on possible alternative mechanisms.  相似文献   

10.
Over recent years, the supposedly universal Hofmeister series has been replaced by a diverse spectrum of direct, partially altered and reversed series. This review aims to provide a detailed understanding of the full spectrum by combining results from molecular dynamics simulations, Poisson–Boltzmann theory and AFM experiments. Primary insight into the origin of the Hofmeister series and its reversal is gained from simulation-derived ion–surface interaction potentials at surfaces containing non-polar, polar and charged functional groups for halide anions and alkali cations. In a second step, the detailed microscopic interactions of ions, water and functional surface groups are incorporated into Poisson–Boltzmann theory. This allows us to quantify ion-specific binding affinities to surface groups of varying polarity and charge, and to provide a connection to the experimentally measured long-ranged electrostatic forces that stabilize colloids, proteins and other particles against precipitation. Based on the stabilizing efficiency, the direct Hofmeister series is obtained for negatively charged hydrophobic surfaces. Hofmeister series reversal is induced by changing the sign of the surface charge from negative to positive, by changing the nature of the functional surface groups from hydrophobic to hydrophilic, by increasing the salt concentration, or by changing the pH. The resulting diverse spectrum reflects that alterations of Hofmeister series are the rule rather than the exception and originate from the variation of ion-surface interactions upon changing surface properties.  相似文献   

11.
An amphiphilic hexapeptide has been used as a model to quantify how specific ion effects induced by addition of four salts tune the hydrophilic/hydrophobic balance and induce temperature-dependant coacervate formation from aqueous solution. The hexapeptide chosen is present as a dimer with low transfer energy from water to octanol. Taking sodium chloride as the reference state in the Hofmeister scale, we identify water activity effects and therefore measure the free energy of transfer from water to octanol and separately the free energy associated to the adsorption of chaotropic ions or the desorption of kosmotropic ions for the same amphiphilic peptide. These effects have the same order of magnitude: therefore, both energies of solvation as well as transfer into octanol strongly depend on the nature of the electrolytes used to formulate any buffer. Model peptides could be used on separation processes based on criteria linked to "Hofmeister" but different from volume and valency.  相似文献   

12.
The Hofmeister series, which originally described the specific ion effects on the solubility of macromolecules in aqueous solutions, has been a long‐standing unsolved and exceptionally challenging mystery in chemistry. The complexity of specific ion effects has prevented a unified theory from emerging. Accumulating research has suggested that the interactions among ions, water and various solutes play roles. However, among these interactions, the binding between ions and solutes is receiving most of the attention, whereas the effects of ions on the hydrogen‐bond structure in liquid water have been deemed to be negligible. In this study, attenuated‐total‐reflectance Fourier transform infrared spectroscopy is used to study the infrared spectra of salt solutions. The results show that the red‐ and blue‐shifts of the water bending band are in excellent agreement with the characteristic Hofmeister series, which suggests that the ions’ effects on water structure might be the key role in the Hofmeister phenomenon.  相似文献   

13.
Evaluation of Hofmeister effects on the kinetic stability of proteins   总被引:1,自引:0,他引:1  
Dissolved salts are known to affect properties of proteins in solution including solubility and melting temperature, and the effects of dissolved salts can be ranked qualitatively by the Hofmeister series. We seek a quantitative model to predict the effects of salts in the Hofmeister series on the deactivation kinetics of enzymes. Such a model would allow for a better prediction of useful biocatalyst lifetimes or an improved estimation of protein-based pharmaceutical shelf life. Here we consider a number of salt properties that are proposed indicators of Hofmeister effects in the literature as a means for predicting salt effects on the deactivation of horse liver alcohol dehydrogenase (HL-ADH), alpha-chymotrypsin, and monomeric red fluorescent protein (mRFP). We find that surface tension increments are not accurate predictors of salt effects but find a common trend between observed deactivation constants and B-viscosity coefficients of the Jones-Dole equation, which are indicative of ion hydration. This trend suggests that deactivation constants (log k(d,obs)) vary linearly with chaotropic B-viscosity coefficients but are relatively unchanged in kosmotropic solutions. The invariance with kosmotropic B-viscosity coefficients suggests the existence of a minimum deactivation constant for proteins. Differential scanning calorimetry is used to measure protein melting temperatures and thermodynamic parameters, which are used to calculate the intrinsic irreversible deactivation constant. We find that either the protein unfolding rate or the rate of intrinsic irreversible deactivation can control the observed deactivation rates.  相似文献   

14.
The prevalence of Mg2+ ions in biology and their essential role in nucleic acid structure and function has motivated the development of various Mg2+ ion models for use in molecular simulations. Currently, the most widely used models in biomolecular simulations represent a nonbonded metal ion as an ion‐centered point charge surrounded by a nonelectrostatic pairwise potential that takes into account dispersion interactions and exchange effects that give rise to the ion's excluded volume. One strategy toward developing improved models for biomolecular simulations is to first identify a Mg2+ model that is consistent with the simulation force fields that closely reproduces a range of properties in aqueous solution, and then, in a second step, balance the ion–water and ion–solute interactions by tuning parameters in a pairwise fashion where necessary. The present work addresses the first step in which we compare 17 different nonbonded single‐site Mg2+ ion models with respect to their ability to simultaneously reproduce structural, thermodynamic, kinetic and mass transport properties in aqueous solution. None of the models based on a 12‐6 nonelectrostatic nonbonded potential was able to reproduce the experimental radial distribution function, solvation free energy, exchange barrier and diffusion constant. The models based on a 12‐6‐4 potential offered improvement, and one model in particular, in conjunction with the SPC/E water model, performed exceptionally well for all properties. The results reported here establish useful benchmark calculations for Mg2+ ion models that provide insight into the origin of the behavior in aqueous solution, and may aid in the development of next‐generation models that target specific binding sites in biomolecules. © 2015 Wiley Periodicals, Inc.  相似文献   

15.
Accurate models of alkali and halide ions in aqueous solution are necessary for computer simulations of a broad variety of systems. Previous efforts to develop ion force fields have generally focused on reproducing experimental measurements of aqueous solution properties such as hydration free energies and ion-water distribution functions. This dependency limits transferability of the resulting parameters because of the variety and known limitations of water models. We present a solvent-independent approach to calibrating ion parameters based exclusively on crystal lattice properties. Our procedure relies on minimization of lattice sums to calculate lattice energies and interionic distances instead of equilibrium ensemble simulations of dense fluids. The gain in computational efficiency enables simultaneous optimization of all parameters for Li+, Na+, K+, Rb+, Cs+, F-, Cl-, Br-, and I- subject to constraints that enforce consistency with periodic table trends. We demonstrate the method by presenting lattice-derived parameters for the primitive model and the Lennard-Jones model with Lorentz-Berthelot mixing rules. The resulting parameters successfully reproduce the lattice properties used to derive them and are free from the influence of any water model. To assess the transferability of the Lennard-Jones parameters to aqueous systems, we used them to estimate hydration free energies and found that the results were in quantitative agreement with experimentally measured values. These lattice-derived parameters are applicable in simulations where coupling of ion parameters to a particular solvent model is undesirable. The simplicity and low computational demands of the calibration procedure make it suitable for parametrization of crystallizable ions in a variety of force fields.  相似文献   

16.
Macroreticular-type oleophilic anion exchange resin membranes containing high-molecular-weight ammonium ions such as tri-n-octylbenzylammonium and tri-n-dodecylbenzylammonium as fixed site were freshly prepared. These membranes were wetted well with water-immiscible organic solvents even in aqueous surroundings. The properties of the membrane, i.e. porosity, water and organic solvent content, capacity and conductivity were determined. The permselectivity of the membrane impregnated with nitrobenzene or o-nitrophenyloctylether to halide and thiocyanate ions was evaluated by measurement of bi-ionic membrane potential and electrodialysis. p]The sequence of the permselectivity was Cl? < Br? < I? < SCN?, and was consistent with the Hofmeister anion series. The value of the permselectivity was 10–100 times larger than that of usual hydrophilic anion exchange membranes. It was found that the permselectivity of the present membrane was strongly dependent on the separation factor, which was in turn affected by the hydrophobicity of the membrane. The effect of the ion association between fixed ion-exchange site and counter ion on the specific conductance of the membrane was also discussed.  相似文献   

17.
The Hofmeister ion effect is a very interesting but elusive phenomenon, the importance of which is revealed in self-assembly, ion recognition, and protein folding regulation. With an increasing number of studies suggesting that interactions between ions and solutes play a role in the Hofmeister ion effect, the nature of the Hofmeister phenomenon becomes more debatable. Yet, it is not clear whether the Hofmeister ion effect is a local effect or bulk effect that can reach beyond many hydration shells, where specific interactions between ions and solutes play key roles. In order to further explore this, we applied proton nuclear magnetic resonance (1H-NMR) spectroscopy to study the effects of specific ions on the local environment around N, N-dimethylpropionamide (NDA) and N-isopropylisobutyramide (NPA), which are the model compounds for poly(2-ethyl-2-oxazoline) and poly(N-isopropylacrylamide), respectively. These polymers are important bio-engineering materials that possess thermoresponsive properties and are also subject to specific ion effects. By correlating the changes in chemical shifts of the two methyl groups on either side of the amide bond, it was found that the Hofmeister ion effects on NPA were more anisotropic than on NDA, and that the cationic effects were more anisotropic than the anionic effects on NPA. These results indicated that the effects of specific ions were almost identical for all methyl groups of NDA. On the other hand, NPA is a larger molecule; thus, not all of its methyl groups were subjected to the specific ion effects to the same extent. The calculation of the electrostatic potential surfaces of NDA and NPA suggested that these observations on the Hofmeister ion effects might be due to steric hindrance, and that the observations on the cationic effects might be due to the interactions between cations and NPA being stronger than the interactions between anions and NPA. This would explain why the highly charged cations caused a significant anisotropicity. Additionally, we found that the chemical shift of the water protons (ΔδH2O) of conventional kosmotropic anions was larger than zero, which suggested a stronger HB and more charge transfer between water and these anions. The ΔδH2O of conventional chaotropic anions was less than zero. Despite the different solutes, the results were indifferent in both NDA and NPA solutions. Surprisingly, the ΔδH2O of Cl- at concentrations lower than 1 mol∙L-1 was zero, thus becoming the benchmark between chaotropes and kosmotropes. These results suggested a quantitative measurement of kosmotropicity/chaotropicity, where the anion would be kosmotropic if its ΔδH2O were higher than that of Cl- and chaotropic for the opposing condition. Moreover, the results showed that the effects of the cations on the water structure were minimal, which was consistent with minimal charge transfer between the cations and water. The overall results of this study suggest that the Hofmeister ion effect is a global effect, while local interactions of ions with solutes also play a key role.  相似文献   

18.
We present a theoretical comparison of the surface forces between two graphite-like surfaces at salt concentrations below 10 mM with surfaces charged by various mechanisms. Surface forces include a surface charging or chemisorption contribution to the total free energy. Surfaces are charged by charge regulation (H+ binding), site competition (H+ and cation binding) and redox charging with electrodes coupled to a countercell. Constant surface charge is also considered. Surface parameters are calibrated to give the same potential when isolated. Nonelectrostatic physisorption energies of the potential determining ions provide a specific and significant contribution to the charging energy. Consequently ion specificity is found in the surface forces at concentrations of 1–10 mM, which is not observed under constant charge conditions. The force between redox electrodes continues to show Hofmeister effects at 0.01 mM. We refer to this low concentration Hofmeister effect as “Hofmeister charging”, and suggest that the more common high concentration ion specific effects may be known as “Hofmeister screening”. Hofmeister series are considered over LiCl, NaCl, KCl and NaNO3, NaClO4, NaSCN with the cations (or H+) being the potential determining ions. A K+ anomaly is attributed to the small size of the weakly hydrated chaotropic K+ ion, with Li+ and Na+ explicitly modelled as strongly hydrated cosmotropes.  相似文献   

19.
Aqueous processes ranging from protein folding and enzyme turnover to colloidal ordering and macromolecular precipitation are sensitive to the nature and concentration of the ions present in solution. Herein, the effect of a series of sodium salts on the lower critical solution temperature (LCST) of poly(N-isopropylacrylamide), PNIPAM, was investigated with a temperature gradient microfluidic device under a dark-field microscope. While the ability of a particular anion to lower the LCST generally followed the Hofmeister series, analysis of solvent isotope effects and of the changes in LCST with ion concentration and identity showed multiple mechanisms were at work. In solutions containing sufficient concentrations of strongly hydrated anions, the phase transition of PNIPAM was directly correlated with the hydration entropy of the anion. On the other hand, weakly hydrated anions were salted-out through surface tension effects and displayed improved hydration by direct ion binding.  相似文献   

20.
This work presents new molecular models for alkali and halide ions in aqueous solution. The force fields were parameterized with respect to the reduced liquid solution density at 293.15 K and 1 bar, considering all possible ion combinations simultaneously. The experimental target data are reproduced with a high accuracy over a wide range of salinity. The ion models predict structural properties of electrolyte solutions well, such as pair correlation functions and hydration numbers. The force fields provide good predictions of the properties studied here in combination with different models for water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号