首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
The present study the ultrasound assisted adsorption of dyes in single system onto Fe3O4 magnetite nanoparticles loaded on activated carbon (Fe3O4-MNPs-AC) was described following characterization and identification of this adsorbent by conventional techniques likes field emission scanning electron microscopy, transmission electron microscopy, particle-size distribution, X-ray diffraction and Fourier transform infrared spectroscopy. A central composite design in conjunction with a response surface methodology according to f-test and t-test for recognition and judgment about significant term led to construction of quadratic model which represent relation among responses and effective terms. This model has unique ability to predict adsorption data behavior over a large space around central and optimum point. Accordingly Optimum conditions for well and quantitative removal of present dyes was obtained best operation and conditions: initial SY, MB and EB dyes concentration of 15, 15 and 25 mg L−1, 4.0, 6.0 and 5.0 of pH, 360, 360 and 240 s sonication time and 0.04, 0.03 and 0.032 g of Fe3O4-MNPs-AC. Replication of similar experiment (N = 5) guide that average removal percentage of SY, MB and EB were found to be 96.63 ± 2.86%, 98.12 ± 1.67% and 99.65 ± 1.21% respectively. Good agreement and closeness of Predicted and experimental result and high adsorption capacity of dyes in short time strongly confirm high suitability of present method for waste water treatment, while easy separation of present nanoparticle and its good regeneration all support good applicability of Fe3O4-MNPs-AC for waste water treatment. The kinetic study can be represented by combination of pseudo second-order and intraparticle diffusion. The obtained maximum adsorption capacities correspond to Langmuir as best model for representation of experimental data correspond to dyes adsorption onto Fe3O4-MNPs-AC were 76.37, 78.76 and 102.00 mg g−1 for SY, MB and EB, respectively. In addition, the performance comparison of ultrasound-assisted, magnetic stirrer assisted and vortex assisted adsorption methods demonstrates that ultrasound is an effective and good choice for facilitation of adsorption process via. Compromise of simple and facile diffusion.  相似文献   

2.
Chromium doped zinc oxide nanoparticles (ZnO: Cr-NPs) was synthesized by ultrasonically assisted hydrothermal method and characterized by FE-SEM, XRD and TEM analysis. Subsequently, this composite ultrasonically assisted was deposited on activated carbon (ZnO: Cr-NPs-AC) and used for simultaneous ultrasound-assisted removal of three toxic organic dye namely of malachite green (MG), eosin yellow (EY) and Auramine O (AO). Dyes spectra overlap in mixture (major problem for simultaneous investigation) of this systems was extensively resolved by derivative spectrophotometric method. The magnitude of variables like initial dyes concentration, adsorbent mass and sonication time influence on dyes removal was optimized using small central composite design (CCD) combined with desirability function (DF) approach, while pH was studied by one-a-time approach. The maximized removal percentages at desirability of 0.9740 was set as follow: pH 6.0, 0.019 g ZnO: Cr-NPs-AC, 3.9 min sonication at 4.5, 4.8 and 4.7 mg L−1 of MG, EY and AO, respectively. Above optimized points lead to achievement of removal percentage of 98.36%, 97.24%, and 99.26% correspond to MG, EY and AO, respectively. ANOVA for each dyes based p-value less than (<0.0001) suggest highly efficiency of CCD model for prediction of data concern to simultaneous removal of these dyes within 95% confidence interval, while their F-value for MG, EY and AO is 935, 800.2, and 551.3, respectively, that confirm low participation of this them in signal. The value of multiple correlation coefficient R2, adjusted and predicted R2 for simultaneous removal of MG is 0.9982, 0.9972 and 0.9940, EY is 0.9979, 0.9967 and 0.9930 and for AO is 0.9970, 0.9952 and 0.9939. The adsorption rate well fitted by pseudo second-order and Langmuir model via high, economic and profitable adsorption capacity of 214.0, 189.7 and 211.6 mg g−1 for MG, EY and AO, respectively.  相似文献   

3.
    
The green synthesis of metallic nanoparticles paved the way to improve and protect the environment by decreasing the use of toxic chemicals and eliminating biological risks in biomedical applications. Plant mediated synthesis of metal nanoparticles is gaining more importance owing to its simplicity, rapid rate of synthesis of nanoparticles and eco-friendliness. The present article reports an environmentally benign and unexploited method for the synthesis of silver nanocatalysts using Trigonella foenum-graecum seeds, which is a potential source of phytochemicals. The UV–visible absorption spectra of the silver samples exhibited distinct band centered around 400–440 nm. The major phytochemicals present in the seed extract responsible for the formation of silver nanocatalysts are identified using FTIR spectroscopy. The report emphasizes the effect of the size of silver nanoparticles on the degradation rate of hazardous dyes, methyl orange, methylene blue and eosin Y by NaBH4. The efficiency of silver nanoparticles as a promising candidate for the catalysis of organic dyes by NaBH4 through the electron transfer process is established in the present study.  相似文献   

4.
The present paper focused on the ultrasonic assisted simultaneous removal of fast green (FG), eosin Y (EY) and quinine yellow (QY) from aqueous media following using MOF-5 as a metal organic framework and activated carbon hybrid (AC-MOF-5). The structure and morphology of AC-MOF-5 was identified by SEM, FTIR and XRD analysis. The interactive and main effects of variables such as pH, initial dyes concentration (mg L−1), adsorbent dosage (mg) and sonication time (min) on removal percentage were studied by central composite design (CCD), subsequent desirability function (DF) permit to achieved real variable experimental condition. Optimized values were found 7.06, 5.68, 7.59 and 5.04 mg L−1, 0.02 g and 2.55 min for pH, FG, EY and QY concentration, adsorbent dosage and sonication time, respectively. Under this conditions removal percentage were obtained 98.1%, 98.1% and 91.91% for FG, EY and QY, respectively. Two models, namely partial least squares (PLS) and multi-layer artificial neural network (ANN) model were used for building up to construct an empirical model to predict the dyes under study removal behavior. The obtained results show that ANN and PLS model is a powerful tool for prediction of under-study dyes adsorption by AC-MOF-5. The evaluation and estimation of equilibrium data from traditional isotherm models display that the Langmuir model indicated the best fit to the equilibrium data with maximum adsorption capacity of 21.230, 20.242 and 18.621 mg g−1, for FG, EY and QY, respectively, while the adsorption rate efficiently follows the pseudo-second-order model.  相似文献   

5.
    
S-doped and Cu- and Co-doped TiO2 was synthesized by a sol–gel method and characterized by FE-SEM, XRD, EDX and FTIR. The Co/Cu/S-TiO2 nanocomposite loaded on the activated carbon as new nanoadsorbent was used for simultaneous removal of methylene blue (MB) and sunset yellow (SY) from aqueous solution by ultrasonic-assisted adsorption method. In this work, central composite design (CCD) and adaptive neuro-fuzzy inference system (ANFIS) as a support tool for examining data and making prediction are used to recognize and predict the removal percentage in MB and SY dye solution of different concentrations. The predictive capabilities of CCD and ANFIS are compared in terms of square correlation coefficient (R2), root mean square error (RMSE), mean absolute error (MAE) and absolute average deviation (AAD) against the empirical data. It is found that the ANFIS model shows the better prediction accuracy than the CCD model.In addition to, the optimization of ultrasound-assisted simultaneous removal of methylene blue (MB) and sunset yellow (SY) on the Co/Cu/S-TiO2/AC nanocomposite by response surface methodology (RSM) for the optimization of the process variables, such as MB and SY concentrations, Co/Cu/S-TiO2/AC nanocomposite dose and sonication time, was investigated.Various isotherm and kinetic models were used in the experimental data. The results revealed that the langmuir isotherm and pseudo-second-order model had a better correlation than the other models.  相似文献   

6.
    
Magnetic γ-Fe2O3 nanoparticles modificated by bis(5-bromosalicylidene)-1,3-propandiamine (M-γ-Fe2O3-NPs-BBSPN) and characterized by field emission scanning electron microscopy (FE-SEM), Fourier transforms infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). This modified compound as novel adsorbent was applied for the ultrasound-assisted removal of Pb2+ ion in combination with flame atomic absorption spectroscopy (FAAS). The influences of the effective parameters including initial Pb2+ ion concentration, pH, adsorbent mass and ultrasound time were optimized by central composite design (CCD). Maximum removal percentage of Pb2+ ion which obtained at 25 mg L1 of Pb2+, 25 mg of adsorbent and 4 min mixing with sonication at pH 6.0. The precision of the equation obtained by CCD was confirmed by the analysis of variance and calculation of correlation coefficient relating the predicted and the experimental values of removal percentage of Pb2+ ion. The kinetic and isotherm of ultrasound-assisted removal of Pb2+ ion was well described by second-order kinetic and Langmuir isotherm model with maximum adsorption capacity of 163.57 mg g1.  相似文献   

7.
The present study was focused on the removal of methylene blue (MB) from aqueous solution by ultrasound-assisted adsorption onto the gold nanoparticles loaded on activated carbon (Au-NP-AC). This nanomaterial was characterized using different techniques such as SEM, XRD, and BET. The effects of variables such as pH, initial dye concentration, adsorbent dosage (g), temperature and sonication time (min) on MB removal were studied and using central composite design (CCD) and the optimum experimental conditions were found with desirability function (DF) combined response surface methodology (RSM). Fitting the experimental equilibrium data to various isotherm models such as Langmuir, Freundlich, Tempkin and Dubinin–Radushkevich models show the suitability and applicability of the Langmuir model. Analysis of experimental adsorption data to various kinetic models such as pseudo-first and second order, Elovich and intraparticle diffusion models show the applicability of the second-order equation model. The small amount of proposed adsorbent (0.01 g) is applicable for successful removal of MB (RE > 95%) in short time (1.6 min) with high adsorption capacity (104–185 mg g−1).  相似文献   

8.
The preparation of Ag doped ZnO nanoparticles conducted through the method of laser-induction is presented in this work. The Ag/ZnO nanoparticles attained from various weight percentages of added AgNO3 relative to ZnO were applied under visible-light irradiation for evaluating the heterogeneous photocatalytic degradations of methylene blue (MB) solutions. It was shown that the catalytic behavior of Ag/ZnO nanoparticles in the visible-light range is notably improved through the Ag deposition onto ZnO nanoparticles by the method of laser-induction with a maximum effectiveness of 92% degradation. The properties of the nanoparticles were characterized by the employments of UV-vis spectroscopy (UV-vis), X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), and selected-area electron diffraction (SAED).  相似文献   

9.
《Ultrasonics sonochemistry》2014,21(4):1441-1450
The present study focused on the simultaneous ultrasound-assisted removal of sunset yellow and erythrosine dyes from aqueous solutions using ZnS:Ni nanoparticles loaded on activated carbon (ZnS:Ni-NP-AC) as an adsorbent. ZnS:Ni nanoparticles were synthesized and characterized using different techniques such as FESEM, XRD and TEM. The effects of various parameters such as sonication time, pH, initial dye concentrations and adsorbent dose on the percentage of dye removal were investigated. Parameters were optimized by central composite design (CCD) combined with response surface methodology (RSM) and desirability function (DF). A good agreement between experimental and predicted values was observed. The ultrasound-assisted adsorbent (0.04 g) was capable of high percentage removal (98.7% and 99.6%) of sunset yellow and erythrosine in short time (3.8 min).  相似文献   

10.
在水溶液中,氧化石墨烯(Go)对亚甲基蓝(CMB)的荧光可产生猝灭作用,加入适量Bi3+可使体系的荧光增强,且增强程度与Bi3+的加入量有关。氧化石墨烯含有大量的含氧官能团使之表面带负电荷,易于分散在水中。带正电荷的荧光染料亚甲基蓝通过静电引力和π—π堆积作用吸附在GO表面,形成了GO-MB复合物,从而产生荧光猝灭。使用改进的Hummers制备了氧化石墨烯,应用扫描电子显微镜(SEM)和透射电子显微镜(TEM)对制备的GO进行了表征。利用紫外可见吸收光谱验证了石墨烯与亚甲基蓝的作用过程,结果表明亚甲基蓝的荧光猝灭后,其两个主要吸收峰强度明显降低,而且GO的吸收光谱与MB的发射光谱完全不同,重叠度太小,不能发生能量转移,因此,GO与MB发生的荧光猝灭属于静态猝灭过程。当向亚甲基蓝氧化石墨烯络合体系加入Bi3+后,由于Bi3+体积小,带正电荷多从而取代了亚甲基蓝致使亚甲基蓝脱离氧化石墨烯,荧光恢复,荧光恢复的程度随Bi3+量的增加而增强,据此建立了氧化石墨烯-亚甲基蓝荧光光度法测定Bi3+的新方法。考察了亚甲基蓝、氧化石墨烯浓度,酸度以及试剂加入顺序对体系荧光恢复的影响,该络合体系的激发波长为667 nm,发射波长为690 nm,在优化条件下,Bi3+的浓度在0.5~100 μmol·L-1范围内与荧光强度呈良好的线性关系,相关系数为0.995 5。方法的检出限为1.0×10-8 mol·L-1(S/N=3)。评价了该方法的选择性,结果表明当共存离子为1 000倍的K+,Ca2+,Na+,Mg2+,Cu2+;100倍的Fe3+,Be2+,SiO2-3,Al3+,Ni2+,Sb3+,NO-3,Cl-,F-;20倍的Pb2+,Hg2+,Cd2+不干扰Bi3+的测定,新方法具有灵敏度高、快速、成本低等优点,将提出的方法用于环境水样的分析,回收率为93.4%~105.2%。  相似文献   

11.
In this study, a new hierarchical nanostructure that consists of zinc oxide (ZnO) was produced by the electrospinning process followed by a hydrothermal technique. First, electrospinning of a colloidal solution that consisted of zinc nanoparticles, zinc acetate dihydrate and poly(vinyl alcohol) was performed to produce polymeric nanofibers embedding solid nanoparticles. Calcination of the obtained electrospun nanofiber mats in air at 500 °C for 90 min produced pure ZnO nanofibers with rough surfaces. The rough surface strongly enhanced outgrowing of ZnO nanobranches when a specific hydrothermal technique was used. Methylene blue dihydrate was used to check the photocatalytic ability of the produced nanostructures. The results indicated that the hierarchical nanostructure had a better performance than the other form.  相似文献   

12.
    
The present study focuses the synthesis of polyaniline nanoparticles (PANP) by rapid mixing polymerization method. They were recognized by FTIR and SEM techniques. Moreover they were utilized for the removal of Crystal Violet (CV) dye by ultrasonicated adsorption process. It ensures a quick alternative method compared to other conventional processes, which led to enhancement of mass transfer by ultrasound waves. The effectiveness of the process was confirmed through the effect of certain conditions like sonication time, temperature, adsorbent dosage and CV concentrations. The validity of the process was estimated by various adsorption isotherms. Kinetics and thermodynamic studies was also conducted to authenticate the process. The optimum operating parameters (OOP) were evaluated by Response Surface Methodology (RSM) based on central composite design (CCD) for the removal of CV dye. Moreover analysis of variances (ANOVA) was employed to estimate the significance of experimental variables. The predicated removal efficiency was found to be 94.29% which prove to be effectiveness of the process.  相似文献   

13.
The mixture of graphene oxide (GO) and dye molecules may provide some new applications due to unique electronic, optical, and structural properties. Methylene blue (MB), a typical anionic dye, can attach on GO via π-π stacking and electrostatic interaction, and the molecule removal process on GO has been observed. However, it remains unclear about the ultrafast carrier dynamics and the internal energy transfer pathways of the system which is composed of GO and MB. We have employed ultrafast optical pump-probe spectroscopy to investigate the excited dynamics of the GO-MB system dispersed in water by exciting the samples at 400 nm pump pulse. The pristine MB and GO dynamics are also analyzed in tandem for a direct comparison. Utilizing the global analysis to fit the measured signal via a sequential model, five lifetimes are acquired:(0.61±0.01) ps, (3.52±0.04) ps, (14.1±0.3) ps, (84±2) ps, and (3.66±0.08) ns. The ultrafast dynamics corresponding to these lifetimes was analyzed and the new relaxation processes were found in the GO-MB system, compared with the pristine MB. The results reveal that the functionalization of GO can alter the known decay pathways of MB via the energy transfer from GO to MB in system, the increased intermediate state, and the promoted energy transfer from triplet state MB to ground state oxygen molecules dissolved in aqueous sample.  相似文献   

14.
A rare 18th century wallpaper depicting a basket of flowers has been recently discovered in the building where Buffon, the famous French Naturalist, had established his Library and written a large part of its ‘Histoire Naturelle’. The wallpaper fragments were analysed and some pigments identified: gypsum, calcite, carbon black, vermilion and lapis lazuli; a blue/green organic compound was seemingly used to dye the paper. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
    
By a simple wet-chemical procedure using a permanganate in the acidic medium, diatomite coated with amorphous manganese oxide nanoparticles was synthesized. The structural, microstructural and morphological characterizations of the as-synthesized catalysts confirmed the nanostructure of MnO2 and its stabilization on the support - diatomite. The highly efficient and rapid degradation of methylene blue and methyl orange over synthesized MnO2 coated Diatomite has been carried out. The results revealed considerably faster degradation of the dyes against the previously reported data. The proposed mechanism of the dye-degradation is considered to be a combinatorial effect of chemical, physicochemical and physical processes. Therefore, the fabricated catalysts have potential application in waste water treatment, and pollution degradation for environmental remediation.  相似文献   

16.
    
The nitrogen (N) doped Ti4O7 photocatalyst was prepared from urea as a nitrogen source by a microwave method. The resulting photocatalyst was characterized by X-ray diffraction (XRD), Field Emission Scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), UV–visible diffuse reflectance spectroscopy (UV–Vis DRS) and UV–vis spectroscopy (UV–Vis). 0.1 M N doped Ti4O7 photocatalyst exhibited methylene blue decomposition efficiency of 100% which was prepared by microwave treatment for above 30 min. Rate constant was found to be 0.028910 min−1 in the first order kinetic.  相似文献   

17.
    
The present research focus on designing an appropriate dispersive solid-phase microextraction (UA-DSPME) for preconcentration and determination of Eriochrome Cyanine R (ECR) in aqueous solutions with aid of sonication using lead (II) dioxide nanoparticles loaded on activated carbon (PbO-NPs-AC). This material was fully identified with XRD and SEM. Influence of pH, amounts of sorbent, type and volume of eluent, and sonication time on response properties were investigated and optimized by central composite design (CCD) combined with surface response methodology using STATISTICA. Among different solvents, dimethyl sulfoxide (DMSO) was selected as an efficient eluent, which its combination by present nanoparticles and application of ultrasound waves led to enhancement in mass transfer. The predicted maximum extraction (100%) under the optimum conditions of the process variables viz. pH 4.5, eluent 200 μL, adsorbent dosage 2.5 mg and 5 min sonication was close to the experimental value (99.50%). at optimum conditions some experimental features like wide 5–2000 ng mL−1 ECR, low detection limit (0.43 ng mL−1, S/N = 3:1) and good repeatability and reproducibility (relative standard deviation, <5.5%, n = 12) indicate versatility in successful applicability of present method for real sample analysis. Investigation of accuracy by spiking known concentration of ECR over 200–600 ng mL−1 gave mean recoveries from 94.850% to 101.42% under optimal conditions. The procedure was also applied for the pre-concentration and subsequent determination of ECR in tap and waste waters.  相似文献   

18.
    
Highly ordered mesoporous material MCM-41 was synthesized from tetraethylorthosilicate (TEOS) as Si source and cetyltrimethylammonium bromide (CTAB) as template. Well-dispersed NiO nanoparticles were introduced into the highly ordered mesoporous MCM-41 by chemical precipitation method to prepare the highly ordered mesoporous NiO/MCM-41 composite. X-ray diffraction (XRD) analysis, transmission electron microscopy (TEM) and high-resolution TEM (HRTEM), and nitrogen adsorption–desorption measurement were used to examine the morphology and the microstructure of the obtained composite. The morphological study clearly revealed that the synthesized NiO/MCM-41 composite has a highly ordered mesoporous structure with a specific surface area of 435.9 m2 g−1. A possible formation mechanism is preliminary proposed for the formation of the nanostructure. The adsorption performance of NiO/MCM-41 composite as an adsorbent was further demonstrated in the removal azo dyes of methyl orange (MO), Congo red (CR), methylene blue (MB) and rhodaming B (RB) under visible light irradiation and dark, respectively. The kinetics and mechanism of removal methylene blue were studied. The results show that NiO/MCM-41 composite has a good removal capacity for organic pollutant MB from the wastewater under the room temperature. Compared with MCM-41 and NiO nanoparticles, 54.2% and 100% higher removal rate were obtained by the NiO/MCM-41 composite.  相似文献   

19.
A mixed oxide of cobalt (Co) and nickel (Ni) with an approximate composition of Co0.4Ni0.4O0.2 was prepared chemically by precipitating from the corresponding metal carbonates and heating the mixture of carbonates at 650 °C under ambient atmosphere. The mixed (Co-Ni) oxide thus prepared was characterized by IR, SEM and XRD methods. The composition of the mixed metal oxide was obtained by EDX analysis. The surface behavior of the Co-Ni mixed oxide matrix was tested by adsorption studies and pHpzc measurement. The Co-Ni mixed oxide matrix behaves as a charged adsorbent at the pH media higher and lower than its pHpzc value (9.50) and thus found to be capable of anchoring the oppositely charged species onto its surface. Removal of cationic and anionic dyestuffs, viz., methylene blue (MB) and procion red (PR), respectively, was attempted using the mixed oxide surface as adsorbent. Although both the dyes can be removed by the mixed oxide, the extent of PR removal (∼70%) seems to be much higher than that of MB (∼20%) demonstrating the superior performance of the Co-Ni mixed oxide for its use as adsorbent in removing the anionic PR dyestuff from water.  相似文献   

20.
A new heterogeneous sonocatalytic system consisting of a MoO3/Al2O3 catalyst and H2O2 combined with ultrasonication was studied to improve and accelerate the oxidation of model sulfur compounds of diesel, resulting in a significant enhancement in the process efficiency. The influence of ultrasound on properties, activity and stability of the catalyst was studied in detail by means of GC-FID, PSD, SEM and BET techniques. Above 98% conversion of DBT in model diesel containing 1000 μg/g sulfur was obtained by new ultrasound-assisted desulfurization at H2O2/sulfur molar ratio of 3, temperature of 318 K and catalyst dosage of 30 g/L after 30 min reaction, contrary to the 55% conversion obtained during the silent process. This improvement was considerably affected by operation parameters and catalyst properties. The effects of main process variables were investigated using response surface methodology in silent process compared to ultrasonication. Ultrasound provided a good dispersion of catalyst and oxidant by breakage of hydrogen bonding and deagglomeration of them in the oil phase. Deposition of impurities on the catalyst surface caused a quick deactivation in silent experiments resulting only 5% of DBT oxidation after 6 cycles of silent reaction by recycled catalyst. Above 95% of DBT was oxidized after 6 ultrasound-assisted cycles showing a great improvement in stability by cleaning the surface during ultrasonication. A considerable particle size reduction was also observed after 3 h sonication that could provide more dispersion of catalyst in model fuel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号