首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
To extract fault features of rolling bearing vibration signals precisely, a fault diagnosis method based on parameter optimized multi-scale permutation entropy (MPE) and Gath-Geva (GG) clustering is proposed. The method can select the important parameters of MPE method adaptively, overcome the disadvantages of fixed MPE parameters and greatly improve the accuracy of fault identification. Firstly, aiming at the problem of parameter determination and considering the interaction among parameters comprehensively of MPE, taking skewness of MPE as fitness function, the time series length and embedding dimension were optimized respectively by particle swarm optimization (PSO) algorithm. Then the fault features of rolling bearing were extracted by parameter optimized MPE and the standard clustering centers is obtained with GG clustering. Finally, the samples are clustered with the Euclid nearness degree to obtain recognition rate. The validity of the parameter optimization is proved by calculating the partition coefficient and average fuzzy entropy. Compared with unoptimized MPE, the propose method has a higher fault recognition rate.  相似文献   

2.
As a powerful tool for measuring complexity and randomness, multivariate multi-scale permutation entropy (MMPE) has been widely applied to the feature representation and extraction of multi-channel signals. However, MMPE still has some intrinsic shortcomings that exist in the coarse-grained procedure, and it lacks the precise estimation of entropy value. To address these issues, in this paper a novel non-linear dynamic method named composite multivariate multi-scale permutation entropy (CMMPE) is proposed, for optimizing insufficient coarse-grained process in MMPE, and thus to avoid the loss of information. The simulated signals are used to verify the validity of CMMPE by comparing it with the often-used MMPE method. An intelligent fault diagnosis method is then put forward on the basis of CMMPE, Laplacian score (LS), and bat optimization algorithm-based support vector machine (BA-SVM). Finally, the proposed fault diagnosis method is utilized to analyze the test data of rolling bearings and is then compared with the MMPE, multivariate multi-scale multiscale entropy (MMFE), and multi-scale permutation entropy (MPE) based fault diagnosis methods. The results indicate that the proposed fault diagnosis method of rolling bearing can achieve effective identification of fault categories and is superior to comparative methods.  相似文献   

3.
The goal of the paper is to present a solution to improve the fault detection accuracy of rolling bearings. The method is based on variational mode decomposition (VMD), multiscale permutation entropy (MPE) and the particle swarm optimization-based support vector machine (PSO-SVM). Firstly, the original bearing vibration signal is decomposed into several intrinsic mode functions (IMF) by using the VMD method, and the feature energy ratio (FER) criterion is introduced to reconstruct the bearing vibration signal. Secondly, the multiscale permutation entropy of the reconstructed signal is calculated to construct multidimensional feature vectors. Finally, the constructed multidimensional feature vector is fed into the PSO-SVM classification model for automatic identification of different fault patterns of the rolling bearing. Two experimental cases are adopted to validate the effectiveness of the proposed method. Experimental results show that the proposed method can achieve a higher identification accuracy compared with some similar available methods (e.g., variational mode decomposition-based multiscale sample entropy (VMD-MSE), variational mode decomposition-based multiscale fuzzy entropy (VMD-MFE), empirical mode decomposition-based multiscale permutation entropy (EMD-MPE) and wavelet transform-based multiscale permutation entropy (WT-MPE)).  相似文献   

4.
In order to detect the incipient fault of rolling bearings and to effectively identify fault characteristics, based on amplitude-aware permutation entropy (AAPE), an enhanced method named hierarchical amplitude-aware permutation entropy (HAAPE) is proposed in this paper to solve complex time series in a new dynamic change analysis. Firstly, hierarchical analysis and AAPE are combined to excavate multilevel fault information, both low-frequency and high-frequency components of the abnormal bearing vibration signal. Secondly, from the experimental analysis, it is found that HAAPE is sensitive to the early failure of rolling bearings, which makes it suitable to evaluate the performance degradation of a bearing in its run-to-failure life cycle. Finally, a fault feature selection strategy based on HAAPE is put forward to select the bearing fault characteristics after the application of the least common multiple in singular value decomposition (LCM-SVD) method to the fault vibration signal. Moreover, several other entropy-based methods are also introduced for a comparative analysis of the experimental data, and the results demonstrate that HAAPE can extract fault features more effectively and with a higher accuracy.  相似文献   

5.
刘备  胡伟鹏  邹孝  丁亚军  钱盛友 《物理学报》2019,68(2):28702-028702
根据高强度聚焦超声(HIFU)治疗中超声散射回波信号的特点,本文利用变分模态分解(VMD)与多尺度排列熵(MPE)对生物组织变性识别进行了研究.首先对生物组织中的超声散射回波信号进行变分模态分解,根据各阶模态的功率谱信息熵值分离出噪声分量和有用分量;对分离出的有用信号进行重构并提取其多尺度排列熵;然后通过Gustafson-Kessel (GK)模糊聚类确定聚类中心,采用欧氏贴近度与择近原则对生物组织进行变性识别.将所提方法应用于HIFU治疗中超声散射回波信号实验数据,用遗传算法对多尺度排列熵的参数优化后,对293例未变性组织和变性组织的超声散射回波信号数据进行了多尺度排列熵分析,发现变性组织的超声散射回波信号的多尺度排列熵值要高于未变性组织;多尺度排列熵可以较好地识别生物组织是否变性.相对于EMD-MPE-GK模糊聚类以及VMD-小波熵(WE)-GK模糊聚类变性识别方法,本文所提方法中变性与未变性组织特征交叠区域数据点更少,聚类效果和分类性能更好;本实验环境下生物组织变性识别结果表明,该方法的识别率更高,高达93.81%.  相似文献   

6.
When rolling bearings have a local fault, the real bearing vibration signal related to the local fault is characterized by the properties of nonlinear and nonstationary. To extract the useful fault features from the collected nonlinear and nonstationary bearing vibration signals and improve diagnostic accuracy, this paper proposes a new bearing fault diagnosis method based on parameter adaptive variational mode extraction (PAVME) and multiscale envelope dispersion entropy (MEDE). Firstly, a new method hailed as parameter adaptive variational mode extraction (PAVME) is presented to process the collected original bearing vibration signal and obtain the frequency components related to bearing faults, where its two important parameters (i.e., the penalty factor and mode center-frequency) are automatically determined by whale optimization algorithm. Subsequently, based on the processed bearing vibration signal, an effective complexity evaluation approach named multiscale envelope dispersion entropy (MEDE) is calculated for conducting bearing fault feature extraction. Finally, the extracted fault features are fed into the k-nearest neighbor (KNN) to automatically identify different health conditions of rolling bearing. Case studies and contrastive analysis are performed to validate the effectiveness and superiority of the proposed method. Experimental results show that the proposed method can not only effectively extract bearing fault features, but also obtain a high identification accuracy for bearing fault patterns under single or variable speed.  相似文献   

7.
研究超临界流体在不同压力和温度的结构特征有助于深刻理解并有效利用超临界流体.本文采用分子动力学方法模拟超临界压力、拟临界温度附近流体的结构及密度波动曲线的排列熵,分析状态参数变化的影响.结果表明,定压下,径向分布函数随温度升高,第一峰值位置逐渐向右移动,但右移幅度随着压力偏离临界点距离的增大而减弱,近临界压力时,出现峰值最高点的工况和等温压缩系数的极值点位置一致,压力增大,该现象消失.低压力拟临界点时易出现面积大、相对集中且分布稳定的高/低密度区,无明显嵌套现象.静态结构因子存在一定发散行为,发散的最大值和等温压缩系数极值点所处工况符合.低压力时密度时间序列的波动幅度最大,类周期现象较明显.在分子间势能、等温压缩系数和热运动效应的共同作用下,当压力(P)为1.1倍的临界压力(Pc)时,排列熵在0.99倍的拟临界温度(Tpc)达到最小值,P = 1.3Pc和1.5Pc时,最小排列熵与等温压缩系数的最大值工况点保持一致,压力继续增大,各模拟工况密度和排列熵的波动减弱,流体均匀性增强.  相似文献   

8.
朱胜利  甘露 《物理学报》2016,65(7):70502-070502
由于混沌时间序列和随机过程具有很多类似的性质, 因而在实际中很难将两者区分开来. 混沌信号检测与识别是混沌时间序列分析中一个重要的课题. 混沌信号是由确定性的混沌映射或混沌系统产生的, 相比于高斯白噪声序列, 其在非完整的二维相空间中表现出更加丰富的结构特性. 本文通过研究混沌时间序列和高斯白噪声序列在非完整二维相空间中的分布特性, 利用混沌信号的非线性动力学特性, 提出了一种基于非完整二维相空间分量置换的混沌信号检测方法. 该方法首先由接收序列得到非完整的二维相空间, 基于第一维分量大小关系实现对第二维分量的置换与分组, 进一步求得F检验统计量. 然后利用混沌系统的局部特性, 获取非完整二维相空间的动力学结构信息, 实现对混沌序列的有效检测. 在高斯白噪声条件下对多种混沌信号进行了信号检测的数值仿真. 仿真结果表明: 相比置换熵检测, 本文所提算法所需数据量小、计算简单以及具有更低的时间复杂度, 同时对噪声具有更好的鲁棒性.  相似文献   

9.
利用排列熵检测近40年华北地区气温突变的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
侯威  封国林  董文杰  李建平 《物理学报》2006,55(5):2663-2668
运用一种新的动力学突变检测方法——排列熵(permutation entropy,PE)算法,计算并分析了中国华北地区52个站点1960年—2000年逐日平均气温资料的排列熵演化情况,发现中国华北地区气温在20世纪70年代中期、80年代初均发生了较大突变;进一步用经验模态分解(empirical mode decomposition,EMD)方法对排列熵序列进行逐级平稳化处理,结果发现这一地区的气温突变与准10年这一年代际时间尺度的周期变率密切相关,其原因与太阳黑子活动有着密切联系. 关键词: 华北 突变 排列熵算法 经验模态分解  相似文献   

10.
Insomnia is a common sleep disorder that is closely associated with the occurrence and deterioration of cardiovascular disease, depression and other diseases. The evaluation of pharmacological treatments for insomnia brings significant clinical implications. In this study, a total of 20 patients with mild insomnia and 75 healthy subjects as controls (HC) were included to explore alterations of electroencephalogram (EEG) complexity associated with insomnia and its pharmacological treatment by using multi-scale permutation entropy (MPE). All participants were recorded for two nights of polysomnography (PSG). The patients with mild insomnia received a placebo on the first night (Placebo) and temazepam on the second night (Temazepam), while the HCs had no sleep-related medication intake for either night. EEG recordings from each night were extracted and analyzed using MPE. The results showed that MPE decreased significantly from pre-lights-off to the period during sleep transition and then to the period after sleep onset, and also during the deepening of sleep stage in the HC group. Furthermore, results from the insomnia subjects showed that MPE values were significantly lower for the Temazepam night compared to MPE values for the Placebo night. Moreover, MPE values for the Temazepam night showed no correlation with age or gender. Our results indicated that EEG complexity, measured by MPE, may be utilized as an alternative approach to measure the impact of sleep medication on brain dynamics.  相似文献   

11.
摘要:针对光伏并网逆变器电路中故障信号的非线性、非平稳特点,提出一种基于经验模态分解(EMD)和样本熵(SampEn)的故障诊断方法。首先,利用经验模态分解对逆变器的三相输出电压进行分解,得到有限个本征模式分量(IMF),从中选取包含故障主要信息的前几个本征模式分量提取故障信息。然后,计算本征模式分量的样本熵,从而得到用于故障诊断的特征向量;最后,将逆变器开路故障进行分类和编码,将故障特征向量输入BP神经网络进行模式识别,从而达到故障诊断的目的。在Matlab环境下对光伏并网逆变器的故障诊断进行了实验,实验结果证明了文中方法能实现对光伏并网逆变器的故障诊断,且与小波包变换相比,该方法具有诊断效率高和准确度高等特点。  相似文献   

12.
Cross-frequency phase–amplitude coupling (PAC) plays an important role in neuronal oscillations network, reflecting the interaction between the phase of low-frequency oscillation (LFO) and amplitude of the high-frequency oscillations (HFO). Thus, we applied four methods based on permutation analysis to measure PAC, including multiscale permutation mutual information (MPMI), permutation conditional mutual information (PCMI), symbolic joint entropy (SJE), and weighted-permutation mutual information (WPMI). To verify the ability of these four algorithms, a performance test including the effects of coupling strength, signal-to-noise ratios (SNRs), and data length was evaluated by using simulation data. It was shown that the performance of SJE was similar to that of other approaches when measuring PAC strength, but the computational efficiency of SJE was the highest among all these four methods. Moreover, SJE can also accurately identify the PAC frequency range under the interference of spike noise. All in all, the results demonstrate that SJE is better for evaluating PAC between neural oscillations.  相似文献   

13.
In order to accurately identify various types of ships and develop coastal defenses, a single feature extraction method based on slope entropy (SlEn) and a double feature extraction method based on SlEn combined with permutation entropy (SlEn&PE) are proposed. Firstly, SlEn is used for the feature extraction of ship-radiated noise signal (SNS) compared with permutation entropy (PE), dispersion entropy (DE), fluctuation dispersion entropy (FDE), and reverse dispersion entropy (RDE), so that the effectiveness of SlEn is verified, and SlEn has the highest recognition rate calculated by the k-Nearest Neighbor (KNN) algorithm. Secondly, SlEn is combined with PE, DE, FDE, and RDE, respectively, to extract the feature of SNS for a higher recognition rate, and SlEn&PE has the highest recognition rate after the calculation of the KNN algorithm. Lastly, the recognition rates of SlEn and SlEn&PE are compared, and the recognition rates of SlEn&PE are higher than SlEn by 4.22%. Therefore, the double feature extraction method proposed in this paper is more effective in the application of ship type recognition.  相似文献   

14.
Surface electromyography (sEMG) is a valuable technique that helps provide functional and structural information about the electric activity of muscles. As sEMG measures output of complex living systems characterized by multiscale and nonlinear behaviors, Multiscale Permutation Entropy (MPE) is a suitable tool for capturing useful information from the ordinal patterns of sEMG time series. In a previous work, a theoretical comparison in terms of bias and variance of two MPE variants—namely, the refined composite MPE (rcMPE) and the refined composite downsampling (rcDPE), was addressed. In the current paper, we assess the superiority of rcDPE over MPE and rcMPE, when applied to real sEMG signals. Moreover, we demonstrate the capacity of rcDPE in quantifying fatigue levels by using sEMG data recorded during a fatiguing exercise. The processing of four consecutive temporal segments, during biceps brachii exercise maintained at 70% of maximal voluntary contraction until exhaustion, shows that the 10th-scale of rcDPE was capable of better differentiation of the fatigue segments. This scale actually brings the raw sEMG data, initially sampled at 10 kHz, to the specific 0–500 Hz sEMG spectral band of interest, which finally reveals the inner complexity of the data. This study promotes good practices in the use of MPE complexity measures on real data.  相似文献   

15.
The use of chaotic systems in electronics, such as Pseudo-Random Number Generators (PRNGs), is very appealing. Among them, continuous-time ones are used less because, in addition to having strong temporal correlations, they require further computations to obtain the discrete solutions. Here, the time step and discretization method selection are first studied by conducting a detailed analysis of their effect on the systems’ statistical and chaotic behavior. We employ an approach based on interpreting the time step as a parameter of the new “maps”. From our analysis, it follows that to use them as PRNGs, two actions should be achieved (i) to keep the chaotic oscillation and (ii) to destroy the inner and temporal correlations. We then propose a simple methodology to achieve chaos-based PRNGs with good statistical characteristics and high throughput, which can be applied to any continuous-time chaotic system. We analyze the generated sequences by means of quantifiers based on information theory (permutation entropy, permutation complexity, and causal entropy × complexity plane). We show that the proposed PRNG generates sequences that successfully pass Marsaglia Diehard and NIST (National Institute of Standards and Technology) tests. Finally, we show that its hardware implementation requires very few resources.  相似文献   

16.
Ship-radiated noise is one of the important signal types under the complex ocean background, which can well reflect physical properties of ships. As one of the valid measures to characterize the complexity of ship-radiated noise, permutation entropy (PE) has the advantages of high efficiency and simple calculation. However, PE has the problems of missing amplitude information and single scale. To address the two drawbacks, refined composite multi-scale reverse weighted PE (RCMRWPE), as a novel measurement technology of describing the signal complexity, is put forward based on refined composite multi-scale processing (RCMP) and reverse weighted PE (RWPE). RCMP is an improved method of coarse-graining, which not only solves the problem of single scale, but also improves the stability of traditional coarse-graining; RWPE has been proposed more recently, and has better inter-class separability and robustness performance to noise than PE, weighted PE (WPE), and reverse PE (RPE). Additionally, a feature extraction scheme of ship-radiated noise is proposed based on RCMRWPE, furthermore, RCMRWPE is combined with discriminant analysis classifier (DAC) to form a new classification method. After that, a large number of comparative experiments of feature extraction schemes and classification methods with two artificial random signals and six ship-radiated noise are carried out, which show that the proposed feature extraction scheme has better performance in distinguishing ability and stability than the other three similar feature extraction schemes based on multi-scale PE (MPE), multi-scale WPE (MWPE), and multi-scale RPE (MRPE), and the proposed classification method also has the highest recognition rate.  相似文献   

17.
提出了一种基于粒子滤波状态估计的滚动轴承故障识别方法,该方法主要包括故障模型建立和故障识别两个步骤。在故障模型建立部分,首先依据滚动轴承不同故障状态下的振动信号,建立对应的自回归模型,作为故障模型;在故障识别部分,将正常状态下对应的模型,转化为状态空间模型,设计粒子滤波器,然后对不同的故障状态进行估计,提取其残差的相关特征,并结合模型参数特征应用BP神经网络识别算法进行故障识别。最后以美国凯斯西储大学的滚动轴承振动数据为例,验证了该方法的有效性。  相似文献   

18.
The fuzzy-entropy-based complexity metric approach has achieved fruitful results in bearing fault diagnosis. However, traditional hierarchical fuzzy entropy (HFE) and multiscale fuzzy entropy (MFE) only excavate bearing fault information on different levels or scales, but do not consider bearing fault information on both multiple layers and multiple scales at the same time, thus easily resulting in incomplete fault information extraction and low-rise identification accuracy. Besides, the key parameters of most existing entropy-based complexity metric methods are selected based on specialist experience, which indicates that they lack self-adaptation. To address these problems, this paper proposes a new intelligent bearing fault diagnosis method based on self-adaptive hierarchical multiscale fuzzy entropy. On the one hand, by integrating the merits of HFE and MFE, a novel complexity metric method, named hierarchical multiscale fuzzy entropy (HMFE), is presented to extract a multidimensional feature matrix of the original bearing vibration signal, where the important parameters of HMFE are automatically determined by using the bird swarm algorithm (BSA). On the other hand, a nonlinear feature matrix classifier with strong robustness, known as support matrix machine (SMM), is introduced for learning the discriminant fault information directly from the extracted multidimensional feature matrix and automatically identifying different bearing health conditions. Two experimental results on bearing fault diagnosis show that the proposed method can obtain average identification accuracies of 99.92% and 99.83%, respectively, which are higher those of several representative entropies reported by this paper. Moreover, in the two experiments, the standard deviations of identification accuracy of the proposed method were, respectively, 0.1687 and 0.2705, which are also greater than those of the comparison methods mentioned in this paper. The effectiveness and superiority of the proposed method are verified by the experimental results.  相似文献   

19.
Wind turbine gearboxes operate in harsh environments; therefore, the resulting gear vibration signal has characteristics of strong nonlinearity, is non-stationary, and has a low signal-to-noise ratio, which indicates that it is difficult to identify wind turbine gearbox faults effectively by the traditional methods. To solve this problem, this paper proposes a new fault diagnosis method for wind turbine gearboxes based on generalized composite multiscale Lempel–Ziv complexity (GCMLZC). Within the proposed method, an effective technique named multiscale morphological-hat convolution operator (MHCO) is firstly presented to remove the noise interference information of the original gear vibration signal. Then, the GCMLZC of the filtered signal was calculated to extract gear fault features. Finally, the extracted fault features were input into softmax classifier for automatically identifying different health conditions of wind turbine gearboxes. The effectiveness of the proposed method was validated by the experimental and engineering data analysis. The results of the analysis indicate that the proposed method can identify accurately different gear health conditions. Moreover, the identification accuracy of the proposed method is higher than that of traditional multiscale Lempel–Ziv complexity (MLZC) and several representative multiscale entropies (e.g., multiscale dispersion entropy (MDE), multiscale permutation entropy (MPE) and multiscale sample entropy (MSE)).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号