首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
In this paper, a model to calculate the dark current of quantum well infrared photodetectors at high-temperature regime is presented. The model is derived from a positive-definite quantum probability-flux and considers thermionic emission and thermally-assisted tunnelling as mechanisms of dark current generation. Its main input data are the wave functions obtained by time-independent Schrodinger equation and it does not require empirical parameters related to the transport of carriers. By means of this model, the dark current of quantum well infrared photodetectors at high-temperature regime is investigated with respect to the temperature, the barrier width, the applied electric field and the position of the first excited state. The theoretical results are compared with experimental data obtained from lattice-matched InAlAs/InGaAs, InGaAsP/InP on InP substrate and AlGaAs/GaAs structures with rectangular wells and symmetric barriers, whose absorption peak wavelengths range from MWIR to VLWIR. The corresponding results are in a good agreement with experimental data at different temperatures and at a wide range of applied electric field.  相似文献   

2.
刘红梅  杨春花  刘鑫  张建奇  石云龙 《物理学报》2013,62(21):218501-218501
为了表征噪声对量子点红外探测器性能的影响, 本文推导了噪声的理论模型. 该模型通过考虑纳米尺度电子传输和微米尺度电子传输对激发能的共同影响, 并结合噪声增益, 实现了对噪声的估算. 得到的结果与实验的数据相比, 显示了很好的一致性, 从而验证了这个模型的正确性. 关键词: 电子传输 暗电流 增益 噪声  相似文献   

3.
We study the dark current of the GaAs/AlGaAs quantum-well infrared photodetector (QWIP) by assuming a drift-diffusion carrier transport in the barriers where the electric fields are obtained by the current continuity condition and the self-consistent energy band structure. It has been shown that due to the current continuity condition, the dark currents across the QWIP devices are determined by the thermionic emission from the emitter to the multiple quantum well (MQW) region. The self-consistent calculation of the Schrödinger and Poisson equations shows a weak electric field in the barrier region connecting to the emitter (much smaller than the average field across the QWIP at low bias) due to the accumulation of carriers in the triangle quantum well formed at the emitter-MQW interface, which results in a very small dark current at low bias. The numerical results explain well our experimental observation.  相似文献   

4.
This paper presents a theoretical analysis for the characteristics of quantum wire infrared photodetectors (QRIPs). Mathematical model describing this device is introduced. Maple 4 software is used to device this model. The developed model is used to investigate the behavior of the device with different values of performance parameters such as number of quantum wire layers, lateral characteristic size, and temperature. The modeling results are validated against experimental published work and full agreements are obtained. Several performance parameters are tuned to enhance the performance of these quantum photodetectors through the presented modeling. The resultant performance characteristics and comparison among both quantum well infrared photodetectors (QWIPs) and QRIPs are presented in this work. From the obtained results we notice that the total dark current in the QRIPs can be significantly lower than that in the QWIPs. Moreover, main features of the QRIPs such as the large gap between the induced photocurrent and dark current open the way for overcoming the problems of quantum dot infrared photodetectors (QDIPs).  相似文献   

5.
This paper presents a theoretical analysis for the dark current characteristics of different quantum infrared photodetectors. These quantum photodetectors are quantum dot infrared photodetectors (QDIP), quantum wire infrared photodetectors (QRIP), and quantum well infrared photodetectors (QWIP). Mathematical models describing these devices are introduced. The developed models accounts for the self-consistent potential distribution. These models are taking the effect of donor charges on the spatial distribution of the electric potential in the active region. The developed model is used to investigate the behavior of dark current with different values of performance parameters such as applied voltage, number of quantum wire (QR) layers, QD layers, lateral characteristic size, doping quantum wire density and temperature. It explains strong sensitivity of dark current to the density of QDs/QRs and the doping level of the active region. In order to confirm our models and their validity on the practical applications, a comparison between the results obtained by proposed models and that experimentally published are conducted and full agreement is observed. Several performance parameters are tuned to enhance the performance of these quantum photodetectors through the presented modeling. The resultant performance characteristics and comparison among them are presented in this work. From the obtained results we notice that the total dark current in the QRIPs can be significantly lower than that in the QWIPs. Moreover, main features of the QRIPs such as the large gap between the induced photocurrent and dark current open the way for overcoming the problems of quantum dot infrared photodetectors.  相似文献   

6.
IV characterization of an n-type quantum well infrared photodetector which consists of stepped and graded barriers has been done under dark at temperatures between 20–300 K. Different current transport mechanisms and transition between them have been observed at temperature around 47 K. Activation energies of the electrons at various bias voltages have been obtained from the temperature dependent IV measurements. Activation energy at zero bias has been calculated by extrapolating the bias dependence of the activation energies. Ground state energies and barrier heights of the four different quantum wells have been calculated by using an iterative technique, which depends on experimentally obtained activation energy. Ground state energies also have been calculated with transfer matrix technique and compared with iteration results. Incorporating the effect of high electron density induced electron exchange interaction on ground state energies; more consistent results with theoretical transfer matrix calculations have been obtained.  相似文献   

7.
李金锋  万婷  王腾飞  周文辉  莘杰  陈长水 《物理学报》2019,68(2):21101-021101
利用热力学统计理论和激光器输出特性理论,建立了太赫兹量子级联激光器(THz QCL)有源区中上激发态电子往更高能级电子态泄漏的计算模型,以输出功率度量电子泄漏程度研究分析了晶格温度和量子阱势垒高度对电子泄漏的影响.数值仿真结果表明,晶格温度上升会加剧电子泄漏,并且电子从上激发态泄漏到束缚态的数量大于泄漏到阱外连续态,同时温度的上升也会降低激光输出功率.增加量子阱势垒高度能抑制电子泄漏,并且有源区量子阱结构中存在一个最优量子阱势垒高度. THz QCL经过最优量子阱势垒高度优化后,工作温度得到提升,其输出功率相比于以往的结果也有所提高.研究结果对优化THz QCL有源区结构、抑制电子泄漏和改善激光器输出特性有指导作用.  相似文献   

8.
Quantum dot infrared photodetectors (QDIPs) have many advantages over other types of semiconductor-based photodetectors. However some of its characteristics have been investigated theoretically, there are many unstudied points. In this paper a new approach is presented to evaluate quantum dot infrared photodetectors dark current and photocurrent. In this study, it is assumed that both thermionic emission and field-assisted tunneling mechanisms determine the dark current of quantum dot detectors. Based on these assumptions, new formula for average number of electron in a quantum dot for both, dark and illumination condition is calculated, which is more accurate than the previous reported formulas; because in deriving previous reported formulas, it was assumed only thermionic emission determines dark current but field-assisted tunneling mechanisms has not been considered. Then numerical method is used to calculate the average number of electron in a quantum dot and to determine dark current and photocurrent. The theoretical results are compared with experimental data. They have good agreement with available experimental data.  相似文献   

9.
The aim of this work is to establish an approach for obtaining improved design parameters for high temperature operation of terahertz quantum cascade lasers using a multi-objective evolutionary algorithm. For studying the lasing conditions of a quantum cascade laser, a self-consistent model is adopted. This model uses standard wave function approximation and effective mass approximation with relevant scattering mechanisms to solve Schrodinger’s equation for the cascaded quantum wells. Fermi’s Golden Rule is then used to calculate the corresponding lifetime of each eigen states. To describe the coherent evolution of wave functions and phase breaking, density matrix formalism is employed. Subsequently, laser rate equations are used for calculating the parameters related to electronic transport in the device. These parameters are then utilized for investigating the temperature dependence of existing terahertz quantum cascade lasers. Finally, using an optimization technique based on Genetic algorithm, design parameters for resonant-phonon quantum cascade laser are obtained within the terahertz frequency range. The results illustrate that this optimization process can offer improvement in the performance of quantum cascade lasers in terahertz region at an elevated temperature. Moreover, the results also reveal that significant increase in operating temperature of a resonant phonon terahertz QCL is unlikely and hence novel design approaches should be considered for operating THz QCLs at room temperature.  相似文献   

10.
We investigated the transport of pinned charge density waves (CDWs) that is observed in low dimensional materials. We treated pinned CDWs as moving CDWs that were confined within a typical quantum well amongst the many different types where pinning occurs at the barrier. We calculated the current flowing out of the quantum well by confined CDWs. The calculated conductivity is in good correspondence with experimental data in TTF–TCNQ, where the measured Fröhlich–Peierls temperature is 60 K much higher than the theoretical value of 20 K. The voltage dependence of the conductivity was calculated, where this is easily transformed into the dependence of electric field. The magnetic susceptibility was also calculated with a similar trend of experimental data. The susceptibility is a diamagnetic contribution by CDWs in addition to the constant background Pauli paramagnetic part.  相似文献   

11.
Investigation of the quantum dot infrared photodetectors dark current   总被引:1,自引:0,他引:1  
Quantum dot infrared photodetectors (QDIPs) are more efficient than other types of semiconductor based photodetectors; so it has become an actively developed field of research. In this paper quantum dot infrared photodetector dark current is evaluated theoretically. This evaluation is based on the model that was developed by Ryzhii et al. Here it is assumed that both thermionic emission and field-assisted tunneling mechanisms determine the dark current of QDIPs; moreover we have considered Richardson effect, which has not been taken into account in previous research. Then a new formula for estimating average number of electrons in a quantum dot infrared photodetector is derived. Considering the Richardson effect and field-assisted tunneling mechanisms in the dark current improves the accuracy of algorithm and causes the theoretical data to fit better in the experiment. The QDIPs dark current temperature and biasing voltage dependency, contribution of thermionic emission and field-assisted tunneling at various temperatures and biasing voltage in the QDIPs dark current are investigated. Moreover, the other parameter effects like quantum dot (QD) density and QD size effect on the QDIPs dark current are investigated.  相似文献   

12.
This paper mainly presents a theoretical analysis for the characteristics of quantum dot infrared photodetectors (QDIPs) and quantum wire infrared photodetectors (QRIPs). The paper introduces a unique mathematical model of solving Poisson’s equations with the usage of Lambert W functions for infrared detectors’ structures based on quantum effects. Even though QRIPs and QDIPs have been the subject of extensive researches and development during the past decade, it is still essential to implement theoretical models allowing to estimate the ultimate performance of those detectors such as photocurrent and its figure-of-merit detectivity vs. various parameter conditions such as applied voltage, number of quantum wire layers, quantum dot layers, lateral characteristic size, doping density, operation temperature, and structural parameters of the quantum dots (QDs), and quantum wires (QRs). A comparison is made between the computed results of the implemented models and fine agreements are observed. It is concluded from the obtained results that the total detectivity of QDIPs can be significantly lower than that in the QRIPs and main features of the QRIPs such as large gap between the induced photocurrent and dark current of QRIP which allows for overcoming the problems in the QDIPs. This confirms what is evaluated before in the literature. It is evident that by increasing the QD/QR absorption volume in QDIPs/QRIPs as well as by separating the dark current and photocurrents, the specific detectivity can be improved and consequently the devices can operate at higher temperatures. It is an interesting result and it may be benefit to the development of QDIP and QRIP for infrared sensing applications.  相似文献   

13.
A model is developed to provide estimates of the performance of quantum well intersubband infrared photodetectors. By introducing an energy filter to reduce the dark current, the quantum well device performance is improved. The amount of reduction in dark current depends upon the height of the energy filter barrier which can be varied by bias voltage. The energy distributions of the dark current and photocurrent electrons are discussed. Calculated results are presented for detectors with different quantum well widths, including the cases of bound-to-bound and bound-to-continuum transitions. The reduction in dark current results in a higher detectivity, and a substantial improvement over traditional designs can be obtained for some well widths.  相似文献   

14.
T. Kubis  P. Vogl 《Laser Physics》2009,19(4):762-765
We have developed a flexible and accurate self consistent non-equilibrium Green’s functions method for stationary charge transport and optical gain in terahertz quantum cascade lasers. We compare our theoretical results with experimental data of a THz-QCL and find excellent quantitative agreement for the current- voltage characteristics and the peak gain energy. We identify non-radiative losses of electrons of the upper laser level to efficiently increase the threshold current and propose an optimized design that suppresses this coherent leakage.  相似文献   

15.
We report on the effect of temperature fluctuations on the midinfrared electroluminescence from a cascade of coupled AlInAs quantum dots and GaAs quantum wells. The observed line width is significantly broadened with increasing temperature. We then present our theoretical results on homogeneous line broadening due to temperature fluctuations for our experimental system. Our numerical simulations clearly indicate that, temperature fluctuations can account for the observed finite width of the emission lines at high-temperatures.  相似文献   

16.
Quantum dot structures designed for multi-color infrared detection and high temperature (or room temperature) operation are demonstrated. A novel approach, tunneling quantum dot (T-QD), was successfully demonstrated with a detector that can be operated at room temperature due to the reduction of the dark current by blocking barriers incorporated into the structure. Photoexcited carriers are selectively collected from InGaAs quantum dots by resonant tunneling, while the dark current is blocked by AlGaAs/InGaAs tunneling barriers placed in the structure. A two-color tunneling-quantum dot infrared photodetector (T-QDIP) with photoresponse peaks at 6 μm and 17 μm operating at room temperature will be discussed. Furthermore, the idea can be used to develop terahertz T-QD detectors operating at high temperatures. Successful results obtained for a T-QDIP designed for THz operations are presented. Another approach, bi-layer quantum dot, uses two layers of InAs quantum dots (QDs) with different sizes separated by a thin GaAs layer. The detector response was observed at three distinct wavelengths in short-, mid-, and far-infrared regions (5.6, 8.0, and 23.0 μm). Based on theoretical calculations, photoluminescence and infrared spectral measurements, the 5.6 and 23.0 μm peaks are connected to the states in smaller QDs in the structure. The narrow peaks emphasize the uniform size distribution of QDs grown by molecular beam epitaxy. These detectors can be employed in numerous applications such as environmental monitoring, spectroscopy, medical diagnosis, battlefield-imaging, space astronomy applications, mine detection, and remote-sensing.  相似文献   

17.
A quantum well infrared photodetector consisting of self-assembled type II SiGe/Si based quantum wells operating around 1.55 μm at room temperature has been investigated. The Si1−yGey/Si/Si1−xGex/Si/Si1−yGey stack results in a ‘W’ like profiles of the conduction and valence bands strain-compensated in the two low absorption windows of silica fibers infrared photodetectors have been proposed. Such computations have been used for the study of the p-i-n infrared photodetectors operating, around (1.3–1.55 μm) at room temperature. The quantum transport properties of electrons and holes were approved with Schrödinger and kinetic equations resolved self-consistently with the Poisson equation. The theoretical performances of the photodetector were carried out such as the dark current mechanisms, the temperature dependence of normalized dark current and the zero-bias resistance area product (R0A).  相似文献   

18.
We report on growth, fabrication and characterization of the metal–semiconductor–metal (MSM) photodiode based on type-II ZnSe/ZnTe heterostructure. Heterostructure was grown on semi-insulating GaAs substrates by MOVPE. For the first time we present the results of experimental investigations of the MSM photodetector on the base of type-II ZnSe/ZnTe superlattice. The MSM-photodetector demonstrates very low dark current, high current sensitivity and external quantum efficiency. The maximum photoresponse of the MSM-detector at the wavelength 620 nm corresponds to current sensitivity 0.22 A/W and external quantum efficiency 44%. Photoresponse of the MSM-detector shows two peaks of response located at 620 nm and 870 nm. ZnSe/ZnTe type-II superlattice structure reduces the MSM-diode dark current significantly. For the MSM-diode with finger width and gap of 3 µm and 100?×?100 µm2 photosensitive area we have obtained dark current density 10?8 A/cm2 at room temperature.  相似文献   

19.
We present effective mass theory results for intersubband transition energies, oscillator strengths, and other quantities which are relevant to the design of quantum well devices. Results are presented in the form of contour plots for easy reference. Theory gives good agreement with existing experimental data by various research groups. In addition, a new quantum well infrared detector is proposed, which employs resonant tunneling in a triple-barrier diode. The device has a narrow bandwidth controlled by the resonance width and a very low dark current making high temperature (> 77 K) operation possible.  相似文献   

20.
A terahertz quantum cascade laser, operating at lambda=159 microm and exploiting the in-plane confinement arising from perpendicular magnetic field, is used to investigate the physics of electrons confined on excited subbands in the regime of a large ratio of the magnetic field confinement energy to the photon energy. As the magnetic field is increased above about 6 T, and the temperature lowered below 20 K, the devices are characterized by a very low threshold current density, with values as low as J(th)=1A/cm(2), and an increase of gain by five times the low field value. We show that, as with the quantum Hall effect, the key physical process is the localization of the carriers. Evidences for resonant electron-electron scattering processes are directly obtained from light intensity and transport measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号