首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure of the electric double layer of charged nanoparticles and colloids in monovalent salts is crucial to determine their thermodynamics, solubility, and polyion adsorption. In this work, we explore the double layer structure and the possibility of charge reversal in relation to the size of both counterions and coions. We examine systems with various size-ratios between counterions and coions (ion size asymmetries) as well as different total ion volume fractions. Using Monte Carlo simulations and integral equations of a primitive-model electric double layer, we determine the highest charge neutralization and electrostatic screening near the electrified surface. Specifically, for two binary monovalent electrolytes with the same counterion properties but differing only in the coion's size surrounding a charged nanoparticle, the one with largest coion size is found to have the largest charge neutralization and screening. That is, in size-asymmetric double layers with a given counterion's size the excluded volume of the coions dictates the adsorption of the ionic charge close to the colloidal surface for monovalent salts. Furthermore, we demonstrate that charge reversal can occur at low surface charge densities, given a large enough total ion concentration, for systems of monovalent salts in a wide range of ion size asymmetries. In addition, we find a non-monotonic behavior for the corresponding maximum charge reversal, as a function of the colloidal bare charge. We also find that the reversal effect disappears for binary salts with large-size counterions and small-size coions at high surface charge densities. Lastly, we observe a good agreement between results from both Monte Carlo simulations and the integral equation theory across different colloidal charge densities and 1:1-electrolytes with different ion sizes.  相似文献   

2.
Monte Carlo simulations are performed to investigate the effects of salt concentration, valence and size of small ions, surface charge density, and Bjerrum length on the overcharging of isolated spherical nanoparticles within the framework of a primitive model. It is found that charge inversion is most probable in solutions containing multivalent counterions at high salt concentrations. The maximum strength of overcharging occurs near the nanoparticle surface where counterions and coions have identical local concentrations. The simulation results also suggest that both counterion size and electrostatic correlations play major roles for the occurrence of overcharging.  相似文献   

3.
We present here a study of the phase behavior of mixed component NaNO(3)-Na(2)SO(4) (SNS) droplets with NaNO(3) to Na(2)SO(4) molar ratios of 1:1, 3:1, and 10:1, comparing observations with thermodynamic predictions. Measurements are made by Fourier transform infrared attenuated total reflection and micro-Raman spectroscopy for SNS droplets deposited on ZnSe and quartz substrates, respectively. The conventional deliquescence/efflorescence hysteresis in phase behavior is observed. On drying, heterogeneous crystallization leads to phase behavior that is consistent with bulk solution thermodynamics, with the formation of the mixed salt NaNO(3)·Na(2)SO(4)·H(2)O, Na(2)SO(4) (s), and NaNO(3) (s) all observed to form at relative humidities that coincide with predictions by the aerosol inorganics model. However, conditioning of the droplet at high relative humidity prior to drying is observed to lead to quantitative differences between the fractions of different salts formed. When substrate effects do not influence the crystallization process, supersaturated solutions are formed, and this leads to the observation of contact ion pairs. Such measurements of the phase behavior of mixed component droplets are important for testing the reliability of thermodynamic models.  相似文献   

4.
By using the field-theoretic method, we established a unified systematic formulation of a model of counterions and coions confined in two similarly charged plates, and calculated the density distributions of counterions and coions with various coupling parameters by the two methods: Poisson-Boltzmann (PB) approach and the strong coupling (SC) theory, respectively. We also performed Monte Carlo simulations, and obtained the density distributions of counterions and coions with several different coupling parameters. Comparing our theoretical results with those from Monte Carlo simulation, we find that the PB approach is valid when the coupling parameter Xi is smaller than 1, but, as Xi > or = 1, the results by the PB approach deviate from the corresponding Monte Carlo simulation data, and the deviation gets larger with the coupling parameter increasing. This shows that the PB approach is completely invalid when the coupling parameter is equal to 1 or larger than 1. For the latter case, the development trend of the distribution curve calculated by SC theory agrees with that from Monte Carlo simulation as the coupling parameter increases. This demonstrates that the SC theory can give a qualitative available explanation on the density distribution of the counterions in the system in which the coupling parameters are strictly confined.  相似文献   

5.
Micellar behavior of dodecyldimethylamine oxide (DMDAO) with bile salts [sodium deoxycholate (NaDC) and sodium cholate (NaC)] with and without NaCl was studied by surface tension. Interaction parameters of the mixed micelles were estimated using Rubingh's theory. Strong synergism observed for each mixed system, which is a common feature shown by anionic-cationic mixtures. The mixed solutions remained clear even at equimolar ratio. Different behavior of the two bile salts is explained on the basis of their orientation in cationic micelles.  相似文献   

6.
The microstructure of ion-exchange resins has been investigated to understand more clearly the ion-exchange mechanism. Nine types of resins with different pore structures were used: all of the polystyrene family crosslinked with divinylbenzene and anionic resins, with mesh sizes ranging from 100 to 200, except for one (20–50 mesh). Various pore volumes of each resin were determined by measurements of intrusion of some chemical species (H2O, Nd3+, and Hg) into the resin. The results are analyzed on the basis that an ion-exchange resin particle consists of four regions. They are: 1) the mercury intrusion region, 2) the region where coions (such as Nd3+) can intrude but mercury cannot, 3) the region where water or counterions can intrude but coions cannot, and 4) the polymer matrix region occupied by the polymer skeleton. The former two regions are not influenced by the resin-fixed ionic groups. While it used to be thought that specific adsorption of counterions may occur in the entire exchange resin particle, it is appropriate to consider that specific adsorption takes place only in the latter two regions. According to this point of view, the adsorption equilibrium of the Fe3+/Cl? complex ions could be explained more satisfactorily.  相似文献   

7.
We describe a coarse-grained model for Z-DNA that mimics the DNA shape with a relatively small number of repulsive interaction sites. In addition, negative charges are placed at the phosphate positions. The ionic atmosphere around this grooved Z-DNA model is then investigated with Monte Carlo simulation. Cylindrically averaged concentration profiles as well as the spatial distribution of ions have been calculated. The results are compared to those for other DNA models differing in the repulsive core. This allows the examination of the effect of the DNA shape in the ionic distribution. It is seen that the penetrability of the ions to the DNA groove plays an important role in the ionic distribution. The results are also compared with those reported for B-DNA. In both conformers the ions are structured in alternating layers of positive and negative charge. In Z-DNA the layers are more or less concentric to the molecular axis. Besides, no coions enter into the single groove of this conformer. On the contrary, the alternating layers of B-DNA are also structured along the axial coordinate with some coions penetrating into the major groove. In both cases we have found five preferred locations of the counterions and two for the coions. The concentration of counterions reaches its absolute maximum at the narrow Z-DNA groove and at the minor groove of B-DNA, the value of the maximum being higher in the Z conformer.  相似文献   

8.
Salt crystallization during evaporation: impact of interfacial properties   总被引:1,自引:0,他引:1  
Salt damage in stone results in part from crystallization of salts during drying. We study the evaporation of aqueous salt solutions and the crystallization growth for sodium sulfate and sodium chloride in model situations: evaporating droplets and evaporation from square capillaries. The results show that the interfacial properties are of key importance for where and how the crystals form. The consequences for the different forms of salt crystallization observed in practice are discussed.  相似文献   

9.
Huang SW  Hsu JP  Tseng S 《Electrophoresis》2001,22(10):1881-1886
The electrophoretic behavior of a planar particle covered by an ion-penetrable membrane, which simulates a biological entity, is investigated. We show that, in general, a point charge model will overestimate the electrophoretic mobility of a particle and the deviation increases with the increase in the concentration of fixed charge and with the decrease in the thickness of membrane layer. As in the case of a point charge model, the present model also predicts a local maximum in the absolute mobility as the thickness of membrane layer varies. If the sizes of counterions of various valences are the same, then the lower the valence of counterions, the larger the mobility, and the larger the counterions, the greater the mobility. The latter is consistent with the experimental observations in the literature. For the level of the concentration of fixed charge examined, the effect of coions on the mobility is negligible.  相似文献   

10.
In this paper, we report on the study of aqueous solution and aggregation properties of diacyl Lysine surfactant salts with several surfactant counterions at a fixed hydrophobic chain length. They present a critical micellar concentration nearly independent of the counterion. The area per surfactant molecule is around 1.3 nm (2) also independent of the counterion. We have also studied the dry state crystallization of these surfactant salts. We show that small counterion systems tend to form bicontinuous cubic structures and that the increase in counterion size tends to form lamellar structures. We have compared this behavior with the dry state crystallization of the diacyl Lysine surfactants as a function of hydrophobic chain length. For long hydrophobic chains, the crystal structure is lamellar, while for intermediate, length is cubic. Among the structures studied, the one with the shortest chain length crystallizes in a hexagonal inverse phase.  相似文献   

11.
The influence of the species of counterion on the polyelectrolyte behavior and the conformation of poly-L -methionine S-methylsulfonium salts in aqueous solution was studied by viscometric, electrochemical, and optical measurements. The degree of binding of small counterions to charged polyions increases in the sequence: chloride ? bromide < iodide < thiocyanate. The conformations of chloride and bromide salts are independent of polymer concentration. On the contrary, iodide and thiocyanate salts indicate a conformational transition, probably from a random-coil conformation to an intermolecularly stabilized β-form, with the increase of polymer concentration. The results suggest the existence of a strong specific interaction between counterion and macroion in iodide and thiocyanate salt solutions at high polymer concentration.  相似文献   

12.
Thermogels are temperature-responsive soft biomaterials with numerous biomedical applications. They possess high water content and can spontaneously gelate by forming non-covalent physical crosslinks between their constituent amphiphilic polymers when warmed. However, despite the ubiquity of salts in biological fluids and buffer media, the influence of salts on thermogelling polymers and the overall physical properties of the resulting hydrogels are poorly understood. Herein, we elucidate the effects of common inorganic salts on the gelation and micellization properties of a thermogelling polymer containing poly(ethylene glycol), poly(propylene glycol), and poly(caprolactone) components. The identity of the salts' anions and their concentrations was found to exhibit significant effects on the thermogel properties, in some cases being able to decrease the sol-to-gel phase transition by up to 10 °C. We demonstrate that these notable influences are likely brought about by the changes in solvation of both the polymer's hydrophobic and hydrophilic segments, as well as by direct interactions of poorly hydrated anions with the hydrophobic polymer segments. Our findings show that the effects of salts on amphiphilic thermogelling polymers are non-negligible and hence need to be taken into account for engineering and optimization of thermogel properties for different biomedical applications.  相似文献   

13.
Polyoxometalate (POM) clusters derivatized with aniline groups exhibit distinct interactions with counterions and with each other. These interactions lead to the assembly of the clusters into chains and networks upon crystallization. Two cluster types were examined, [W(6)O(25)H(AsC(6)H(4)-4-NH(2))(2)](5-) and [Mo(12)O(46)(AsC(6)H(4)-4-NH(2))(4)](4-). The X-ray crystal structures were solved for the mixed salts containing [C(NH(2))(3)](+)/Na(+), Ag(+)/H(+), or Cu(2+)/H(+) as counterions. The X-ray crystal structures reveal that the POM clusters are linked together by hydrogen bonds or POM-metal ion-POM linkages. The roles of the counterions, solvents, and organic groups in the formation of specific crystalline architectures are discussed. Strongly interacting counterions form bonds to the oxo ligands of the POM and connect them into tetrameric units and/or into one-dimensional chains. The hydrogen bonding strength of the solvent influences the formation of hydrogen bonds between the aniline groups and oxo ligands of the cluster. The aniline groups played differing roles in the final structures: they were either nonbonding, bonded to a counterion, or involved in hydrogen bonding. Depending on the bonding interactions, the architecture of the cluster salts may be significantly altered.  相似文献   

14.
The counterion binding behaviour of micelles of sodium dodecyl sulphate (SDS) and several bile salts in the pure state have been studied, as well as in mutually mixed states, and in a mixed state with polyoxyethylene sorbitan monolaurate (PSML) as a nonionic surfactant. Electrochemical measurements have shown no counterion binding by the pure bile salt micelles and their mixtures with PSML; they can bind counterions when mixed with SDS, whereas the surfactant anions of SDS micelles bind counterions in the pure state and/or in mixed states with PSML. In the SDS-PSML and SDS-bile salts combinations, the counterion association is decreased by the increased proportions of the second component. The extent of counterion binding by the different systems is presented.  相似文献   

15.
16.
Polyion–counterion interactions in sodium polystyrenesulfonate dissolved in (ethylene glycol + water) mixed solvent media have been investigated conductometrically with special reference to their variations as functions of polyelectrolyte concentration, relative permittivity and temperature. Manning counterion condensation theory for polyelectrolyte solutions failed to describe the present experimental results. The data have, therefore, been analyzed using a new model for semidilute polyelectrolyte conductivity which takes into account the scaling arguments proposed by Dobrynin et al. The fractions of uncondensed counterions were found to depend on the polyelectrolyte concentration varying from 0.27 to 0.37, within the concentration range investigated here, indicating a strong interaction between counterions and polyion. A considerable fraction of the counterions is shown to migrate in the same direction as the polyions. The results further demonstrate that the monomer units experience more frictional resistance in solutions as the ethylene glycol content of the mixture increases or as the temperature decreases.  相似文献   

17.
This is a study of the nanofiltration of various charged amino acids and peptides, in solutions of increasing complexity, through an inorganic membrane. Whatever the solution studied, charge effects, repulsion of coions and attraction of the counterions, more than size effects, prevail in the behavior of the solute. The extent of the transmission of a given solute, and hence the selectivity of the separation, were strongly affected by solute environment, mainly because of competitive solute/solute and solute/membrane interactions. However, despite the complexity, the experimental data were always in accordance with the following principles: (i) whatever solution, the electric neutrality was always recovered and (ii) the number of charges, rather than global net charge, should be considered in order to account for amino acid and peptide transmissions. On the basis of these principles, a general mechanism for amino acid and peptide separation in nanofiltration is proposed.  相似文献   

18.
In this paper, we are reporting the influence of addition of aromatic acids (anthranilic and benzoic acid) and their sodium salts on the micellar morphological changes in three cationic gemini surfactant solutions, viz. 5 mM tetramethylene-1,4-bis(N-hexadecyl-N,N-dimethylammonium bromide), 10 mM pentamethylene-1,5-bis(N-hexadecyl-N,N-dimethylammonium bromide), and 10 mM hexamethylene-1,6-bis(N,-hexadecyl-N,N-dimethylammonium bromide). The solubilization site of the counterions (obtained from the additives) near the micellar surface are inferred by 1H NMR. The behavior is explained in the light of binding of counterions to the micelle as well as the nature of the functional group attached to the additive.  相似文献   

19.
Aqueous mixed micellar solutions of perfluoropolyether carboxylic salts with ammonium counterions have been studied by small-angle neutron scattering. Two surfactants differing in the tail length were mixed in proportions n2/n3 = 60/40 w/w, where n2 and n3 are the surfactants with two and three perfluoroisopropoxy units in the tail, respectively. The tails are chlorine-terminated. The mixed micellar solutions, in the concentration range 0.1-0.2 M and thermal interval 20-40 degrees C, show structural characteristics of the interfacial shell that are very similar to ammonium n2 micellar solutions previously investigated; thus, the physics of the interfacial region is dominated by the polar head and counterion. The shape and dimensions of the micelles are influenced by the presence of the n3 surfactant, whose chain length in the micelle is 2 A longer than that of the n2 surfactant. The n3 surfactant favors the ellipsoidal shape in the concentration range 0.1-0.2 M with a 1/2 ionization degree of n2 micelles. The very low surface charge of the mixed micelles is attributed to the increase in hydrophobic interactions between the surfactant tails, due to the longer n3 surfactant molecules in micelles. The closer packing of the tails decreases the micellar curvature and the repulsions between the polar heads, by surface charge neutralization of counterions migrating from the Gouy-Chapman diffuse layer, leading to micellar growth in ellipsoids with greater axial ratios.  相似文献   

20.
Cultural Heritage is a crucial socioeconomic resource; yet, recurring degradation processes endanger its preservation. Serendipitous approaches in restoration practice need to be replaced by systematically addressing conservation issues through the development of advanced materials for the preservation of the artifacts. In the last few decades, materials and colloid science have provided valid solutions to counteract degradation, and we report here the main highlights in the formulation and application of materials and methodologies for the cleaning, protection and consolidation of works of art. Several types of artifacts are addressed, from murals to canvas paintings, metal objects, and paper artworks, comprising both classic and modern/contemporary art. Systems, such as nanoparticles, gels, nanostructured cleaning fluids, composites, and other functional materials, are reviewed. Future perspectives are also commented, outlining open issues and trends in this challenging and exciting field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号