首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Nickel based porous solid was synthesized with 20 kHz ultrasonic irradiation. The reaction of Ni(II) nitrate hexahydrate with 1,3,5-benzene tricarboxylic acid in N,N-Dimethylformamide (DMF) as the sole solvent under ultrasonic radiation produced porous Ni-BTC MOF. Choice of correct solvent for the ultrasonic treatment was proven important. The effect of varying ultrasonic powers (40%, 60% and 80% of 750 W) along with different temperature conditions (50 °C, 60 °C, 70 °C and 80 °C) influenced the respective yield. A very high yield of 88% Ni-BTC MOF was obtained from 80% ultrasonic power at 60 °C. BET surface areas of the MOF crystals measured by N2 gas adsorption isotherms were in the range of 960–1000 m2/g.  相似文献   

2.
Ultrasonic cell grinder extraction (UCGE), using water as the solvent, was firstly applied to extract anthocyanins from blueberry. Extraction yield was related with four variables, including ratio of solution to solid, extraction power, buffer time, and extraction time. On the basis of response surface methodology (RSM), the optimal conditions were determined to be the ratio of solution to solid as 25:1 (mL/g), the extraction power as 1500 W, the buffer time as 3.0 s, and the extraction time as 40 min. The experimental yield of anthocyanins using UCGE was 2.89 mg/g higher than that of conventional ultrasound-assisted extraction (CUAE). This study indicated that UCGE was an innovative, efficient, and environment friendly method in ultrasonic extraction fields, and had a potential to effectively extract other bioactive constituents.  相似文献   

3.
In crystallization, crystal growth defects may reduce the strength and purity of crystals, which are not welcomed in the industry. Herein, isoniazid (INH) crystals were chosen as an example to investigate the formation of crystal defects at the molecular scale by combining experiments and molecular dynamics simulations. It was found that the strong interaction between the solvent and the crystal surface, high temperature, small stirring rate, and low supersaturation can lead to more pronounced crystal defects. The bulk severity of INH crystal defects was reflected by N2 adsorption–desorption measurement. Besides, the single-crystal growth experiments manifested the rough growth mechanism for the (1 1 0) surface in the axial direction and the stepwise growth mechanism for the (0 0 2) surface in the radial direction. For the (1 1 0) surface, cavities occurred under the condition where the growth rate of the crystal edges and corners was greater than that of the surface center due to the starvation phenomenon of diffusion. While for the (0 0 2) surface, when the solvent removal rate was lower than the solute insertion rate, liquid inclusions were formed, which was verified by Raman microscopy. Furthermore, the ultrasonic strategy was successfully proposed to eliminate INH crystal defects and prepare perfect INH crystals. Moreover, the mechanism of ultrasound to reduce the crystal defect was proposed. We believe this work can provide insights into the design and preparation of defect-free crystals in crystallization.  相似文献   

4.
In the present research, a combined extraction method of ultrasound-assisted extraction (UAE) in conjunction with solid phase extraction (SPE) was applied to isolation and enrichment of selected drugs (metoprolol, ticlopidine, propranolol, carbamazepine, naproxen, acenocumarol, diclofenac, ibuprofen) from fish tissues. The extracted analytes were separated and determined by ultra-high performance liquid chromatography with UV detection (UHPLC–UV) technique. The selectivity of the developed UHPLC–UV method was confirmed by comparison with ultra-high performance liquid chromatography–tandem mass spectrometry (UHPLC–MS/MS) analysis.The important parameters, such as composition of type and pH of extraction solvent, solid/liquid rate volume of extraction solvent and number of extraction cycles were studied. The ultrasonic parameters, such as time, power and temperature of the process were optimized by using a half-fraction factorial central composite design (CCD). The mixture of 10 mL of methanol and 7 mL of water (pH 2.2) (three times) was chosen for the extraction of selected drug from fish tissues. The results showed that the highest recoveries of analytes were obtained with an extraction temperature of 40 °C, ultrasonic power of 300 W, extraction time of 30 min.Under the optimal conditions, the linearity of method was 0.12–5.00 μg/g. The determination coefficients (R2) were from 0.979 to 0.998. The limits of detection (LODs) and limits of quantification (LOQs) for the extracted compounds were 0.04–0.17 μg/g and 0.12–0.50 μg/g, respectively. The recoveries were between 85.5% and 115.8%.  相似文献   

5.
Temperature history and distribution of steel workpiece (X20Cr13) was measured by a high tech infrared camera under ultrasonic assisted dry creep feed up grinding. For this purpose, a special experimental setup was designed and fabricated to vibrate only workpiece along two directions by a high power ultrasonic transducer. In this study, ultrasonic effects with respect to grinding parameters including depth of cut (ae), feed speed (vw), and cutting speed (vs) has been investigated. The results indicate that the ultrasonic vibration has considerable effect on reduction of temperature, depth of thermal damage of workpiece and width of temperature contours. Maximum temperature reduction of 25.91% was reported at condition of vs = 15 m/s, vw = 500 mm/min, ae = 0.4 mm in the presence of ultrasonic vibration.  相似文献   

6.
Micro electroforming is widely used for fabricating micro metal devices in Micro Electro Mechanism System (MEMS). However, there is the problem of poor adhesion strength between micro electroforming layer and substrate. This dramatically influences the dimensional accuracy of the device. To solve this problem, ultrasonic agitation method is applied during the micro electroforming process. To explore the effect of the ultrasonic agitation on the adhesion strength, micro electroforming experiments were carried out under different ultrasonic power (0 W, 100 W, 150 W, 200 W, 250 W) and different ultrasonic frequencies (0 kHz, 40 kHz, 80 kHz, 120 kHz, 200 kHz). The effects of the ultrasonic power and the ultrasonic frequency on the micro electroforming process were investigated by polarization method and alternating current (a.c.) impedance method. The adhesion strength between the electroforming layer and the substrate was measured by scratch test. The compressive stress of the electroforming layer was measured by X-ray Diffraction (XRD) method. The crystallite size of the electroforming layer was measured by Transmission Electron Microscopy (TEM) method. The internal contact surface area of the electroforming layer was measured by cyclic voltammetry (CV) method. The experimental results indicate that the ultrasonic agitation can decrease the polarization overpotential and increase the charge transfer process. Generally, the internal contact surface area is increased and the compressive stress is reduced. And then the adhesion strength is enhanced. Due to the different depolarization effects of the ultrasonic power and the ultrasonic frequency, the effects on strengthening the adhesion strength are different. When the ultrasonic agitation is 200 W and 40 kHz, the effect on strengthening the adhesion strength is the best. In order to prove the effect which the ultrasonic agitation can improve the adhesion strength of the micro devices, micro pillar arrays were fabricated under ultrasonic agitation (200 W, 40 kHz). The experimental results show that the residual rate of the micro pillar arrays is increased about 17% by ultrasonic agitation method. This work contributes to fabricating the electroforming layer with large adhesion strength.  相似文献   

7.
In this paper desalting/dehydration process of crude oil by ultrasonic irradiation in a novel batch standing-wave resonator reactor is studied both theoretically and experimentally. The effect of main parameters including ultrasonic irradiation parameters, namely irradiation input power and irradiation time, and also operating parameters, such as temperature and injected water, on the removal efficiencies of salt and water is examined. The obtained results demonstrate that finding the optimum values of the above mentioned parameters is important to prevent a significant decrease in the removal efficiencies of water and especially salt. Thus, crude oil was subjected to optimal ultrasonic irradiation with an input power of 57.7 W, and irradiation time of 6.2 min at temperature of 100 °C. The injected water to dissolve the salt of crude oil was 7 vol.%. Also, the applied settling time and dosage of chemical demulsifier were 60 min and 2 ppm, respectively. Under these optimum conditions the removal efficiencies of the desalting/dehydration process were 84% and 99.8%, respectively, which are suitable for refineries.Also, based on the optimal experimental data, two inferential estimators are developed to obtain the relationships between the salt and water removal efficiencies, and input energy density. These empirical relationships can offer a proper estimation for the salt and water removal efficiencies with irradiation input energy.  相似文献   

8.
This research was conducted to evaluate the potential of ultrasonic irradiation during the solvent extraction of metals, and comparing its efficiency with a mechanically stirred system (MSSX). The simultaneous extraction of zinc and cadmium from sulphate solutions was investigated by di-(2-ethylhexyl) phosphoric acid (D2EHPA) as an organic extractant which was diluted (20%) in kerosene at the organic: aqueous phase ratio of 1:1 and the temperature of 25 °C. The influence of some critical parameters, including contact time, solution pH, ultrasonic power, and zinc/cadmium ratio were investigated on the extraction of the metals. Results show that D2EHPA selectively extract zinc rather than cadmium in both mechanically and ultrasonically mixed systems. It was also found that increase of ultrasonic power from 10 to 120 W cause a small decrease in zinc extraction; while, at low and high levels of the induced power, cadmium extraction was significantly decreased. Results also show that maximum extraction amounts of zinc (88.7%) and cadmium (68.2%) by the MSSX system occurred at the pH of 3 and the contact times of 3 and 20 min, respectively. Although capability of extraction in the ultrasonically assisted solvent extraction (USAX) system for both metals was higher, the selectivity was lower than that of MSSX system under different conditions especially in high zinc/cadmium ratios. It can be concluded that physical effects (i.e. mixing) inducing at low ultrasonic powers (below 60 W) mainly results in increasing solvent extraction rate, while the chemical actions applied at the higher powers have a negative outcome on the extraction rate particularly for cadmium.  相似文献   

9.
High-quality vinegars are traditionally produced by aging them in barrels or bottles. However, these processes are very time-consuming. To accelerate of Zhenjiang vinegar maturation, the ultrasound was used to treat the steeped vinegar. Results showed that, the optimum ultrasonic power, time and ethanol addition for aging vinegar were determined to be 50 W/100 mL, 75 min and 0.75% (V/V), respectively. Under the optimum experimental conditions, the total amino acid of fresh vinegar decreased from 1082.259 mg/100 mL to 871.045 mg/100 mL. Several volatile components increased significantly, such as the total esters, aldehydes and heterocyclic. Total non-volatile organic acids increased from 202.59 mg/10 mL to 233.87 mg/10 mL. The changes of above-mentioned components develop towards the direction of mature vinegar. Coupling the HS-SPME/GC–MS analysis data with Principal Components Analysis, ultrasonic treatment vinegar was determined to be equivalent to 2–3 years of natural aged Zhenjiang vinegar. This study has showed that ultrasound is promising not only in shortening the aging time and lowering costs for the vinegar-making industry, but also in producing fine vinegar.  相似文献   

10.
In the present paper, we reported the successful synthesis of dumbbell-like YF3 nanostructures with a high yield in a mixed system of water/N,N-dimethylformamide (DMF) under the assistance of ultrasound waves of 40 kHz with the ultrasonic power of 100% (200 W) at 65 °C for 2 h, employing Y2O3 (99.99%) and NH4F as the starting reactants. The product was characterized by means of powder X-ray diffraction (XRD), energy dispersive spectrometry (EDS), transmission electron microscopy (TEM), selected area electron diffraction (SAED) pattern and field-emission scanning electron microscopy (SEM). Some factors influencing the morphology of YF3 nanostructures, including the ultrasonic time and power, the amount of NH4F, and the ratio of water/DMF, were systematically investigated. Research showed that the morphology of YF3 could be tuned by the volume ratio of water/DMF. The roles of DMF and the ultrasonic wave in the formation of YF3 nanostructures were discussed.  相似文献   

11.
Oil saturated cylindrical sandstone cores were placed into imbibition cells where they contacted with an aqueous phase and oil recovery performances were tested with and without ultrasonic radiation keeping all other conditions and parameters constant. Experiments were conducted for different initial water saturation, oil viscosity and wettability. The specifications of acoustic sources such as ultrasonic intensity (45–84 W/sq cm) and frequency (22 and 40 kHz) were also changed. An increase in recovery was observed with ultrasonic energy in all cases. This change was more remarkable for the oil-wet medium. The additional recovery with ultrasonic energy became lower as the oil viscosity increased. We also designed a setup to measure the ultrasonic energy penetration capacity in different media, namely air, water, and slurry (sand + water mixture). A one-meter long water or slurry filled medium was prepared and the ultrasonic intensity and frequency were monitored as a function of distance from the source. The imbibition cells were placed at certain distances from the sources and the oil recovery was recorded. Then, the imbibition recovery was related to the ultrasonic intensity, frequency, and distance from the ultrasonic source.  相似文献   

12.
This study reports the optimization of ultrasonic treatment combined with sodium hypochlorite (NaOCl) solution on kiwifruit (Actinidia deliciosa) to evaluate its effect on microbial population, respiration rate and its textural quality. Response surface methodology (RSM) based on four factors three level central composite design was applied to investigate the effects of process variables on ultrasonic treatment. Four independent variables include ultrasonic intensity (184–368 W/cm2), temperature (25–40 °C), treatment time (8–15 min) and concentration of the solvent (30–60 ppm) were considered for this study. According to RSM analysis, the optimal treatment parameters obtained were ultrasonic intensity (368 W/cm2), temperature (25 °C), treatment time (8 min) and concentration of the solvent (30 ppm). Microbial population, respiration rate and some quality parameters were compared with NaOCl treated kiwifruits. An ultrasound combined with NaOCl was found to be the most effective treatment in inhibiting the microbial growth (bacteria, yeast and mold) and preserving the quality of kiwifruits, and these results suggest that the ultrasound treatment may provide an alternative for extending the shelf life of whole kiwifruit, maintains the quality of fresh cut kiwifruits and further increases the shelf life of chitosan coated fresh cut kiwifruit.  相似文献   

13.
In the silicon wet etching process, the “pseudo-mask” formed by the hydrogen bubbles generated during the etching process is the reason causing high surface roughness and poor surface quality. Based upon the ultrasonic mechanical effect and wettability enhanced by isopropyl alcohol (IPA), ultrasonic agitation and IPA were used to improve surface quality of Si (1 1 1) crystal plane during silicon wet etching process. The surface roughness Rq is smaller than 15 nm when using ultrasonic agitation and Rq is smaller than 7 nm when using IPA. When the range of IPA concentration (mass fraction, wt%) is 5–20%, the ultrasonic frequency is 100 kHz and the ultrasound intensity is 30–50 W/L, the surface roughness Rq is smaller than 2 nm when combining ultrasonic agitation and IPA. The surface roughness Rq is equal to 1 nm when the mass fraction of IPA, ultrasound intensity and the ultrasonic frequency is 20%, 50 W and 100 kHz respectively. The experimental results indicated that the combination of ultrasonic agitation and IPA could obtain a lower surface roughness of Si (1 1 1) crystal plane in silicon wet etching process.  相似文献   

14.
In this study, an aqueous ionic liquid based ultrasonic assisted extraction (ILUAE) method for the extraction of the four acetophenones, namely 4-hydroxyacetophenone (1), 2,5-dihydroxyacetophenone (2), baishouwubenzophenone (3) and 2,4-dihydroxyacetophenone (4) from the Chinese medicinal plant Cynanchum bungei was developed. Three kinds of aqueous l-alkyl-3-methylimidazolium ionic liquids with different anion and alkyl chain were investigated. The results indicated that ionic liquids (ILs) showed remarkable effects on the extraction efficiency of acetophenones. In addition, the ILUAE, including several ultrasonic parameters, such as the ILs concentration, solvent to solid ratio, power, particle size, temperature, and extraction time have been optimized. Under these optimal conditions (e.g., with 0.6 M [C4MIM]BF4, solvent to solid ratio of 35:1, power of 175 W, particle size of 60–80 mesh, temperature of 25 °C and time of 50 min), this approach gained the highest extraction yields of four acetophenones 286.15, 21.65, 632.58 and 205.38 μg/g, respectively. The proposed approach has been evaluated by comparison with the conventional heat-reflux extraction (HRE) and regular UAE. The results indicated that ILUAE is an alternative method for extracting acetophenones from C. bungei.  相似文献   

15.
Curcumin, a dietary phytochemical, has been extracted from rhizomes of Curcuma amada using ultrasound assisted extraction (UAE) and the results compared with the conventional extraction approach to establish the process intensification benefits. The effect of operating parameters such as type of solvent, extraction time, extraction temperature, solid to solvent ratio, particle size and ultrasonic power on the extraction yield have been investigated in details for the approach UAE. The maximum extraction yield as 72% was obtained in 1 h under optimized conditions of 35 °C temperature, solid to solvent ratio of 1:25, particle size of 0.09 mm, ultrasonic power of 250 W and ultrasound frequency of 22 kHz with ethanol as the solvent. The obtained yield was significantly higher as compared to the batch extraction where only about 62% yield was achieved in 8 h of treatment. Peleg’s model was used to describe the kinetics of UAE and the model showed a good agreement with the experimental results. Overall, ultrasound has been established to be a green process for extraction of curcumin with benefits of reduction in time as compared to batch extraction and the operating temperature as compared to Soxhlet extraction.  相似文献   

16.
A novel combination of mechanochemical and sonochemical techniques was developed to produce high-surface-area, bio-based calcium carbonate (CaCO3) nanoparticles from eggshells. Size reduction of eggshell achieved via mechanochemical and followed by sonochemical method. First, eggshells were cleaned and ground, then ball milled in wet condition using polypropylene glycol for ten hours to produce fine particles. The ball milled eggshell particles were then irradiated with a high intensity ultrasonic horn (Ti-horn, 20 kHz, and 100 W/cm2) in the presence of N,N-dimethylformamide (DMF); decahydronaphthalene (Decalin); or tetrahydrofuran (THF). The ultrasonic irradiation times varied from 1 to 5 h. Transmission electron microscopic (TEM) studies showed that the resultant particle shapes and sizes were different from each solvent. The sonochemical effect of DMF is more pronounced and the particles were irregular platelets of ~10 nm. The BET surface area (43.687 m2/g) of these nanoparticles is much higher than that of other nanoparticles derived from eggshells.  相似文献   

17.
The objective of this study is to develop a process consisting of ultrasonic-assisted extraction, silica-gel column chromatography and crystallization to optimize pilot scale recovery of schisandrin B (SAB) from Schisandra chinensis seeds. The effects of five independent variables including liquid–solid ratio, ethanol concentration, ultrasonic power, extraction time, and temperature on the SAB yield were evaluated with fractional factorial design (FFD). The FFD results showed that the ethanol concentration was the only significant factor for the yield of SAB. Then, with the liquid–solid ratio 5 (mL/g) and ultrasonic power 600 W, the other three parameters were further optimized by means of response surface methodology (RSM). The RSM results revealed that the optimal conditions consisted of 95% ethanol, 60 °C and 70 min. The average experimental SAB yield under the optimum conditions was found to be 5.80 mg/g, which was consistent with the predicted value of 5.83 mg/g. Subsequently, a silica gel chromatographic process was used to prepare the SAB-enriched extract with petroleum ether/acetone (95:5, v/v) as eluents. After final crystallization, 1.46 g of SAB with the purity of 99.4% and the overall recovery of 57.1% was obtained from 400 g seeds powder. This method provides an efficient and low-cost way for SAB purification for pharmaceutical industrial applications.  相似文献   

18.
We have previously reported on the morphological control of calcium carbonate by changing synthetic conditions such as temperature, pH and degree of supersaturation in liquid reaction. The present study reports the effect of amplitude and frequency of ultrasonic irradiation on the particle size of calcium carbonate using a horn type ultrasonic apparatus at two different frequencies. The calcium carbonate precipitated by mechanical stirring had a particle size of about 20 μm. By contrast, the particle size of vaterite formed under ultrasonic irradiation was about 2 μm, with a specific surface area of 25–30 m2/g. The major polymorph of calcium carbonate formed by ultrasonic irradiation was vaterite with some calcite present. For 40 kHz ultrasonic irradiation, the specific surface area of the calcium carbonate increased with increasing amplitude. The particle size of vaterite formed at this frequency was about 2 μm, and its distribution was sharper than that obtained at 20 kHz. The mode diameter of the synthesized vaterite was found to decrease with increasing amplitude at 40 kHz.  相似文献   

19.
Ultrasound-assisted extraction was used for extraction of bioactive compounds and for production of Allium ursinum liquid extract. The experiments were carried out according to tree level, four variables, face-centered cubic experimental design (FDC) combined with response surface methodology (RSM). Temperature (from 40 to 80 °C), ethanol concentration (from 30% to 70%), extraction time (from 40 to 80 min) and ultrasonic power (from 19.2 to 38.4 W/L) were investigated as independent variables in order to obtain the optimal conditions for extraction and to maximize the yield of total phenols (TP), flavonoids (TF) and antioxidant activity of obtained extracts. Experimental results were fitted to the second order polynomial model where multiple regression and analysis of variance were used to determine the fitness of the model and optimal condition for investigated responses. The predicted values of the TP (1.60 g GAE/100 g DW), TF (0.35 g CE/100 g DW), antioxidant activity, IC50 (0.71 mg/ml) and EY (38.1%) were determined at the optimal conditions for ultrasound assisted extraction: 80 °C temperature, 70% ethanol, 79.8 min and 20.06 W/L ultrasonic power. The predicted results matched well with the experimental results obtained using optimal extraction conditions which validated the RSM model with a good correlation.  相似文献   

20.
Low temperature drying (LTD) allows high-quality dried products to be obtained, preserving the nutritional properties of fresh foods better than conventional drying, but it is a time-consuming operation. Power ultrasound (US) could be used to intensify LTD, but it should be taken into account that process variables, such as the level of applied power, have an influence on the magnitude and extension of the ultrasonic effects. Therefore, the aim of this work was to assess the influence of the level of applied ultrasonic power on the LTD of apple, analyzing the drying kinetics and the quality of the dried product. For that purpose, apple (Malus domestica cv. Granny Smith) cubes (8.8 mm side) were dried (2 m/s) at two different temperatures (10 and −10 °C), without and with (25, 50 and 75 W) US application. In the dried apple, the rehydration kinetics, hardness, total phenolic content, antioxidant capacity and microstructure were analyzed to evaluate the impact of the level of applied ultrasonic power.At both temperatures, 10 and −10 °C, the higher the ultrasonic power level, the shorter the drying time; the maximum shortening of the drying time achieved was 80.3% (at −10 °C and 75 W). The ultrasonic power level did not significantly (p < 0.05) affect the quality parameters analyzed. Therefore, US could be considered a non-thermal method of intensifying the LTD of fruits, like apple, with only a mild impact on the quality of the dried product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号