首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Acoustic field distribution was determined in HIFU sonoreactors as well as localization of cavitation activity by crossing different techniques: modeling, hydrophone measurements, laser tomography and SCL measurements. Particular care was taken with quantification of this last technique by pixels or photon counting. Cavitation bubbles generated by HIFU are mainly located on the outer layer of the propagation cone in the post-focal zone. Greatest acoustic activity is not located at the geometrical focal, but corresponds to a high concentration of bubbles zone. On the contrary, the main sonochemical activity shifts slightly toward the transducer, whereas quenching of inertial cavitation is observed directly at the focal. Finally, SCL thresholds have been determined.  相似文献   

2.
声流现象的研究及其应用   总被引:5,自引:0,他引:5       下载免费PDF全文
钱盛友  王鸿樟  孙福成 《应用声学》1997,16(6):38-42,25
本文从声流产生的机理出发,综合了影响声流的诸因素,介绍了声流现象的检测方法及声流效应的应用。  相似文献   

3.
The focus of this work is to extend the theory of boundary layer induced acoustic streaming to include cylindrical geometries and to highlight the effects of boundary layer induced streaming on flow velocities in micro-scale channels. The work presented here includes the development of a model for streaming in a cylindrical channel by a method of successive approximations. The validity of this model is established by comparison with a well-established model for streaming between parallel plates of infinite extent. This is followed by a discussion on the importance of employing a cylindrical solution including boundary layer induced streaming for the analysis of streaming in micro-scale channels.  相似文献   

4.
5.
This study considers the acoustic streaming in water produced by a lithotripsy pulse. Particle image velocimetry (PIV) method was employed to visualize the acoustic streaming produced by an electromagnetic shock wave generator using video images of the light scattering particles suspended in water. Visualized streaming features including several local peaks and vortexes around or at the beam focus were easily seen with naked eyes over all settings of the lithotripter from 10 to 18 kV. Magnitudes of the peak streaming velocity measured vary in the range of 10-40 mm s(-1) with charging voltage settings. Since the streaming velocity was estimated on the basis of a series of the video images of particles averaged over 1/60s, the time resolution limited by the video frame rate which is 1-2 orders of magnitude larger than driving acoustic activities, measured velocities are expected to be underestimated and were shown a similar order of magnitude lower than those calculated from a simple theoretical consideration. Despite such an underestimation, it was shown that, as predicted by theory, the magnitude of the streaming velocity measured by the present PIV method was proportional to acoustic intensity. In particular it has almost a linear correlation with peak negative pressures (r=0.98683, p=0.0018).  相似文献   

6.
Nowadays, both thermal and mechanical ablation techniques of HIFU associated with cavitation have been developed for noninvasive treatment. A specific challenge for the successful clinical implementation of HIFU is to achieve real-time imaging for the evaluation and determination of therapy outcomes such as necrosis or homogenization. Ultrasound Nakagami-m parametric imaging highlights the degrading shadowing effects of bubbles and can be used for tissue characterization. The aim of this study is to investigate the performance of Nakagami-m parametric imaging for evaluating and differentiating thermal coagulation and cavitation erosion induced by HIFU. Lesions were induced in basic bovine serum albumin (BSA) phantoms and ex vivo porcine livers using a 1.6 MHz single-element transducer. Thermal and mechanical lesions induced by two types of HIFU sequences respectively were evaluated using Nakagami-m parametric imaging and ultrasound B-mode imaging. The lesion sizes estimated using Nakagami-m parametric imaging technique were all closer to the actual sizes than those of B-mode imaging. The p-value obtained from the t-test between the mean m values of thermal coagulation and cavitation erosion was smaller than 0.05, demonstrating that the m values of thermal lesions were significantly different from that of mechanical lesions, which was confirmed by ex vivo experiments and histologic examination showed that different changes result from HIFU exposure, one of tissue dehydration resulting from the thermal effect, and the other of tissue homogenate resulting from mechanical effect. This study demonstrated that Nakagami-m parametric imaging is a potential real-time imaging technique for evaluating and differentiating thermal coagulation and cavitation erosion.  相似文献   

7.
It is well known that ultrasonic cavitation causes a steady flow termed acoustic streaming. In the present study, the velocity of acoustic streaming in water and molten aluminum is measured. The method is based on the measurement of oscillation frequency of Karman vortices around a cylinder immersed into liquid. For the case of acoustic streaming in molten metal, such measurements were performed for the first time. Four types of experiments were conducted in the present study: (1) Particle Image Velocimetry (PIV) measurement in a water bath to measure the acoustic streaming velocity visually, (2) frequency measurement of Karman vortices generated around a cylinder in water, and (3) in aluminum melt, and (4) cavitation intensity measurements in molten aluminum. Based on the measurement results (1) and (2), the Strouhal number for acoustic streaming was determined. Then, using the same Strouhal number and measuring oscillation frequency of Karman vortices in aluminum melt, the acoustic streaming velocity was measured. The velocity of acoustic streaming was found to be independent of amplitude of sonotrode tip oscillation both in water and aluminum melt. This can be explained by the effect of acoustic shielding and liquid density.  相似文献   

8.
The direct finite-difference fluid simulation of acoustic streaming on a fine-meshed three-dimensional model using a graphics processing unit (GPU)-based calculation array is discussed. Airflows are induced by an acoustic traveling wave when an intense sound field is generated in a gap between a bending transducer and a reflector. The calculation results showed good agreement with measurements in a pressure distribution. Several flow vortices were observed near the boundary layer of the reflector and the transducer, which have often been observed near the boundary of acoustic tubes, but have not been observed in previous calculations for this type of ultrasonic air pump.  相似文献   

9.
Use of sweeping mode with a 3.6 MHz High Intensity Focused Ultrasound (HIFU) allows cavitation activity to be controlled. This is especially true in the pre-focal zone where the high concentration of bubbles acts as an acoustic reflector and quenches cavitation above this area. Previous studies attributed the enhancement of cavitation activity under negative sweep to the activation of more bubble nuclei, requiring deeper investigations. After mapping this activity with SCL measurements, cavitation noise spectra were recorded. The behavior of the acoustic broadband noise follows the sonochemical one i.e., showing the same attenuation (positive scan) or intensification (negative scan) of cavitational activity. In 1 M NaCl 3.7 mM 2-propanol solution saturated by a mixture of Ar-15.5%O2-2.2%N2, intensities of SL spectra are high enough to allow detection of several molecular emissions (OH, NH, C2, Na) under negative frequency sweeps. This is the first report of molecular emissions at such high frequency. Their intensities are low, and they are very broad, following the trend obtained at fixed frequency up to 1 MHz. Under optimized conditions, CN emission chosen as a spectroscopic probe is strong enough to be simulated, which is reported for the first time at such high frequency. The resulting characteristics of the plasma do not show any spectral difference, so bubble nature is the same in the pre-and post-focal zone under different sweeping parameters. Consequently, SL and SCL intensification was not related to a change in plasma nature inside the bubbles but to the number of cavitation bubbles.  相似文献   

10.
Acoustic force model for the fluid flow under standing waves   总被引:1,自引:0,他引:1  
An acoustic Strouhal number is introduced to demonstrate that the viscosity of fluid can be ignored in the process of sound propagation and acoustic streaming is independent on the frequency of the acoustic wave. Furthermore, acoustic force based on the periodic velocity fluctuation caused by standing acoustic wave is introduced into Navier–Stokes equation in order to describe the fluid flow in the acoustic boundary layer. The numerical results show that the predicted results are consistent with the analytic solution. And the effect of the nonlinear terms cannot be ignored so the analytic solution derived by boundary-velocity condition is only an approximation for acoustic streaming.  相似文献   

11.
Acoustic radiation force has been demonstrated as a method for manipulating micron-scale particles, but is frequently affected by unwanted streaming. In this paper the streaming in a multi-transducer quasi-standing wave acoustic particle manipulation device is assessed, and found to be dominated by a form of Eckart streaming. The experimentally observed streaming takes the form of two main vortices that have their highest velocity in the region where the standing wave is established. A finite element model is developed that agrees well with experimental results, and shows that the Reynolds stresses that give rise to the fluid motion are strongest in the high velocity region. A technical solution to reduce the streaming is explored that entails the introduction of a biocompatible agar gel layer at the bottom of the chamber so as to reduce the fluid depth and volume. By this means, we reduce the region of fluid that experiences the Reynolds stresses; the viscous drag per unit volume of fluid is also increased. Particle Image Velocimetry data is used to observe the streaming as a function of agar-modified cavity depth. It was found that, in an optimised structure, Eckart streaming could be reduced to negligible levels so that we could make a sonotweezers device with a large working area of up to 13 mm × 13 mm.  相似文献   

12.
该文利用搭建的高速摄影和空化噪声同步观测的声-流耦合空化实验平台,观察分析了声-流耦合场中空化云的演化规律及相应的空化噪声特征。通过引入空化状态变量,给出了空化强度的一种新的明确表述,并提出了一种基于高速摄影图像分析来测量和表征空化状态变量及空化强度的方法。利用该方法进一步对声-流耦合空化时间演化周期性和空间强度分布进行了定量计算。结果表明,声-流耦合空化强度和作用范围相比单独声空化和单独水力空化有显著的提升。  相似文献   

13.
郭淑慧  吕欣 《物理学报》2020,(8):306-315
随着移动通信和互联网技术的不断发展,网络直播逐渐成为了新媒体环境下人们青睐的在线娱乐和信息传播方式.目前广泛应用于课堂教学、真人秀、电竞赛事、品牌营销等方面.数百万主播与数亿计观众的活跃加入和互动,产生了丰富的在线人群行为活动数据,为开展大规模人群行为动力学、平台内容推荐与检测、在线社群演化等研究提供了丰富的实验场景.本文通过梳理国内外网络直播平台数据挖掘与行为分析的相关研究文献,分析了直播平台负载水平、观众行为、主播行为以及社群网络的特征和变化规律,并对直播平台中大规模人群行为表现出的时空规律和重尾效应进行了总结.直播平台中各种社群网络的形成和演化机制、内容推荐与检测等是未来网络直播领域研究的发展趋势.  相似文献   

14.
Hair waste in large amount is produced in India from temples and saloons, India alone exported approximately 1 million kg of hair in 2010. Incineration and degradation of waste human hair leads to environmental concerns. The hydrothermal process is a conventional method for the production of hair hydrolysate. The hydrothermal process is carried out at a very high temperature and pressure, which causes the degradation of heat-sensitive essential amino acids, thereby depleting the nutritional value. This work deals with alkaline hydrolysis of human hair using acoustic and hydrodynamic cavitation, and comparison with the conventional method. The optimal operating conditions for highest efficiency was observed, for the hydrolysis of 1 g of sample hairs in 100 mL of solution, at 4:1 (KOH: hair) ratio, soaking time of 24 h, the ultrasonic power density of 600 W dm−3 (20 KHz frequency and input power 200 W) or hydrodynamic cavitation inlet pressure of 4 or 7 bars. Cavitation results in rupture of disulfide linkages in proteins and mechanical effects lead to cleavage of several hydrogen bonds breaking the keratin sheet structure in hair. Breakdown of bonds leads to a decrease in viscosity of the solution. 10% and 6% reduction in viscosity is obtained at optimal conditions for ultrasonic and hydrodynamic cavitation treatment, respectively. FTIR analysis of produced hair hydrolysate confirmed that the disulfide bonds in hair proteins are broken down during cavitation. The amino acid of hair hydrolysate, prepared using cavitation, has a relatively higher digestibility and nutritional value due to the enhancement of amino-acid content, confirmed using amino acid analysis. Cavitation assisted hair hydrolysate has a potential application in agricultural engineering as a fertilizer for improvement of the quality of the soil and land. Cavitation based hair hydrolysate can also be used as an environmentally friendly and economical source of essential amino acids and digestibles for animal or poultry feed.  相似文献   

15.
声波作用下球形颗粒外声流分布的数值模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
综合考虑声学边界层内的热损失和黏性损失,建立处于平面驻波声压波节位置二维球形颗粒外声流计算模型,利用分离时间尺度的数值方法对颗粒外声流流场特征进行模拟。将模拟结果与相应的解析解和实验结果对比,验证了数值模拟的可靠性。在此基础上,研究了雷诺数Re和斯特劳哈尔数Sr对球形颗粒声学边界层内二阶声流流场结构、涡流强度及范围的影响规律。结果表明,随SrRe增大,声学边界层内的涡流结构尺度呈指数形式减小,其涡流尺度与颗粒直径D和激励频率f成反比,与流体介质运动黏度v成正比;且满足低Sr和高Re的声振系统可形成范围较大、更强烈的声流运动。该数值方法可用于对任意物理模型外声流特性的评估。  相似文献   

16.
Jeong JS  Chang JH  Shung KK 《Ultrasonics》2012,52(6):730-739
In an ultrasound image-guided High Intensity Focused Ultrasound (HIFU) surgery, reflected HIFU waves received by an imaging transducer should be suppressed for real-time simultaneous imaging and therapy. In this paper, we investigate the feasibility of pulse compression scheme combined with notch filtering in order to minimize these HIFU interference signals. A chirp signal modulated by the Dolph-Chebyshev window with 3-9 MHz frequency sweep range is used for B-mode imaging and 4 MHz continuous wave is used for HIFU. The second order infinite impulse response notch filters are employed to suppress reflected HIFU waves whose center frequencies are 4 MHz and 8 MHz. The prototype integrated HIFU/imaging transducer that composed of three rectangular elements with a spherically con-focused aperture was fabricated. The center element has the ability to transmit and receive 6 MHz imaging signals and two outer elements are only used for transmitting 4 MHz continuous HIFU wave. When the chirp signal and 4 MHz HIFU wave are simultaneously transmitted to the target, the reflected chirp signals mixed with 4 MHz and 8 MHz HIFU waves are detected by the imaging transducer. After the application of notch filtering with pulse compression process, HIFU interference waves in this mixed signal are significantly reduced while maintaining original imaging signal. In the single scanline test using a strong reflector, the amplitude of the reflected HIFU wave is reduced to −45 dB. In vitro test, with a sliced porcine muscle shows that the speckle pattern of the restored B-mode image is close to that of the original image. These preliminary results demonstrate the potential for the pulse compression scheme with notch filtering to achieve real-time ultrasound image-guided HIFU surgery.  相似文献   

17.
In this research experimental and simulated analysis investigates the influence of megasonic (MS; 1 ± 0.05 MHz) acoustic-assisted electroplating techniques, with respect to the fabrication of through-hole via (THV) and blind-via (BV) interconnects for the Printed Circuit Board (PCB) industry. MS plating of copper down THV and BV interconnects was shown to produce measurable benefits such as increased connectivity throughout a PCB and cost savings. More specifically, a 700% increase of copper plating rate was demonstrated for THVs of 175 µm diameter and depth-to-width aspect ratio (ar) of 5.7:1, compared with electrodeposition under no-agitation conditions. For BVs, a 60% average increase in copper thickness deposition in 150 µm and 200 µm, ar 1:1, was demonstrated against plating under standard manufacturing conditions including bubble agitation and panel movement. Finite element modelling simulations of acoustic scattering revealed 1st harmonic influence for plating rate enhancement.  相似文献   

18.
Qin Qin 《Applied Acoustics》2004,65(4):325-340
When a high-power laser beam is focused at a point, the air at the focal point is heated to temperatures of thousands of degrees within several nanoseconds and breaks down. This generates a spark that, in turn, is accompanied by an acoustic shock wave. The acoustic shock waves generated by focussing the beam from a pulsed laser with a 1064 nm wavelength and a power of 800 mJ per pulse have been measured using 1/4″ and 1/8″ B&K microphones. Nonlinear sound levels are observed up to 1.5 m from the laser-induced sparks. Beyond a certain region close to the source, levels are found to decrease in a manner consistent with spherical spreading plus nonlinear hydrodynamic losses. Analysis of the waveforms shows that the acoustic pulses associated with the laser-induced sparks are more repeatable and have higher intensity than those from an electrical spark source. Laser-generated acoustic shock waves are ideal for simulating a blast wave or a sonic boom in the laboratory and for studying the associated propagation effects. To illustrate this application, the propagation of the laser generated shock waves over a series of different hard, rough surfaces has been investigated. The results show the distinctive influences of ground roughness on the propagation of the shock wave.  相似文献   

19.
Cavitation intensity is used to describe the activity of cavitation, and several methods are developed to identify the intensity of cavitation. This work aimed to provide an overview and discussion of the several existing characterization methods for cavitation intensity, three acoustic approaches for charactering cavitation were discussed in detail. It was showed that cavitation noise spectrum is too complex and there are some differences and disputes on the characterization of cavitation intensity by cavitation noise. In this review, we recommended a total cavitation noise intensity estimated via the integration of real cavitation noise spectrum over full frequency domain instead of artificially adding inaccurate filtering processing.  相似文献   

20.
The aim of this work is to perform design and optimization of a cavitating device based on CFD simulation. A set of operational and geometrical parameters such as convergence angle, divergence angle, length of throat, and inlet pressure that can affect the hydrodynamic cavitation phenomenon generating in a Venturi are evaluated through CFD simulation and experimental approaches. Response surface methodology (RSM) was employed to achieve the optimum geometrical configuration. The CFD results show that the maximum cavitation zone in the Venturi can be obtained when half angle of the convergence section, throat length and half angle of the divergence section are 22.7°, 4 mm, and 6.5°, respectively. A maximum decolorization of 38.8% has been obtained using the designed Venturi at cavitation number (Cv) of 0.12. Additionally, the results were compared to that of various orifice plates. A decolorization of 26.2% using 33 holes orifice plate and 11.55% in one hole orifice plate approved the superiority of the designed Venturi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号