首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ultrasound (US) serves as a stimulus to change shear viscosity of aqueous polysaccharides of ι-carrageenan, κ-carrageenan and, agar. The US effect was compared in their aqueous solutions at 60 °C for the US frequency of 23, 45, and 83 kHz. Under the US condition with 50 W at 45 kHz, the shear viscosity of each aqueous solution was decreased significantly. Subsequently, when the US was stopped, the shear viscosity returned back to the original value. In addition, the US showed different effects of the US frequency over the viscosity change in the three kinds of polysaccharides. When the US frequency was changed, the US effects were less at 83 kHz and 28 kHz for the shear viscosity change. In addition, as NaCl was present in the aqueous solution, the viscosity change decreased by the US exposure. These results suggest that the US effect on the viscosity reduction was influenced by the condition of polymer coil conformation, which was expanded or shrank by electrostatic repulsion of the SO3? groups. FT-IR analysis supported that the hydrogen bonds of carrageenans were broken during the US exposure. Using Fourier self-deconvolution for the FT-IR spectra without and with US exposure suggests that the US influenced the hydrogen bonds of water and the OH group of polysaccharides.  相似文献   

2.
In this work, a comparison between the temperatures/pressures within acoustic cavitation bubble in an imidazolium-based room-temperature ionic liquid (RTIL), 1-butyl-3-methylimidazolium bis(triflluoromethyl-sulfonyl)imide ([BMIM][NTf2]), and in water has been made for a wide range of cavitation parameters including frequency (140–1000 kHz), acoustic intensity (0.5–1 W cm−2), liquid temperature (20–50 °C) and external static pressure (0.7–1.5 atm). The used cavitation model takes into account the liquid compressibility as well as the surface tension and the viscosity of the medium. It was found that the bubble temperatures and pressures were always much higher in the ionic liquid compared to those predicted in water. The valuable effect of [BMIM][NTf2] on the bubble temperature was more pronounced at higher acoustic intensity and liquid temperature and lower frequency and external static pressure. However, confrontation between the predicted and the experimental estimated temperatures in ionic liquids showed an opposite trend as the temperatures measured in some pure ionic liquids are of the same order as those observed in water. The injection of liquid droplets into cavitation bubbles, the pyrolysis of ionic liquids at the bubble-solution interface as well as the lower number of collapsing bubbles in the ionic liquid may be the responsible for the lower measured bubble temperatures in ionic liquids, as compared with water.  相似文献   

3.
《Solid State Ionics》2006,177(1-2):95-104
The plastic crystal phase forming N-methyl-N-propylpyrrolidinium tetrafluoroborate organic salt (P13BF4) was combined with 2, 5 and 10 wt.% poly(vinyl pyrrolidone) (PVP). The ternary 2 wt.% PVP/2 wt.% LiBF4/P13BF4 was also investigated. Thermal analysis, conductivity, optical thermomicroscopy, and Nuclear Magnetic Resonance (11B, 19F, 1H, 7Li) were used to probe the fundamental transport processes. Both the onset of phase I and the final melting temperature were reduced with increasing additions of PVP. Conductivity in phase I was 2.6 × 10 4 S cm 1 5.2 × 10 4 S cm 1 1.1 × 10 4 S cm 1 and 3.9 × 10 5 S cm 1 for 0, 2, 5 and 10 wt.%PVP/P13BF4, respectively. Doping with 2 wt.% LiBF4 increased the conductivity by up to an order of magnitude in phase II. Further additions of 2 wt.% PVP slightly reduced the conductivity, although it remained higher than for pure P13BF4.  相似文献   

4.
《Solid State Ionics》2006,177(19-25):1725-1728
Apatite-type La10  xSi6  yAlyO27  3x/2  y/2 (x = 0–0.33; y = 0.5–1.5) exhibit predominant oxygen ionic conductivity in a wide range of oxygen partial pressures. The conductivity of silicates containing 26.50–26.75 oxygen atoms per formula unit is comparable to that of gadolinia-doped ceria at 770–870 K. The average thermal expansion coefficients are (8.7–10.8) × 10 6 K 1 at 373–1273 K. At temperatures above 1100 K, silicon oxide volatilization from the surface layers of apatite ceramics and a moderate degradation of the ionic transport with time are observed under reducing conditions, thus limiting the operation temperature of Si-containing solid electrolytes.  相似文献   

5.
The chemical preparation, crystal structure, spectroscopic investigations and optical features are given for a novel organic–inorganic hybrid material [C8H10NO]2CoCl4.The compound is crystallized in the orthorhombic space group Cmca, with the following unit cell parameters: a=19.461(2) Å, b=15.523(2) Å, c=13.7436(15) Å, and Z=8. The atomic arrangement shows an alternation of organic and inorganic layers along the b-axis. The cohesion between these entities is performed by N–H…Cl and N–H…O hydrogen bonds and ππ stacking interactions.Infrared and Raman spectra at room temperature are recorded in the 4000−400 and 4000−0 cm−1 frequency regions, respectively and analyzed on the basis of literature data. This study confirms the presence of the organic cation [C8H10NO]+ and of the [CoCl4]2 anion. UV–vis spectroscopy results showed the indirect transition with band gap energy 2.98 eV.  相似文献   

6.
《Solid State Ionics》2006,177(26-32):2601-2603
New Li+ ion-conductive glasses Li2S–B2S3–Li4SiO4 were synthesized by rapid quenching, and they were transformed into glass ceramics by heat treatment. The heat treatment increased the ionic conductivities of the Li4SiO4-doped glasses, and the highest ionic conductivity observed in the system was 1.0 × 10 3 S cm 1 at room temperature. The glass ceramics were highly stable against electrochemical oxidation with a wide electrochemical window of 10 V.  相似文献   

7.
《Current Applied Physics》2010,10(2):614-624
Barium molybdate (BaMoO4) powders were synthesized by the co-precipitation method and processed in microwave-hydrothermal at 140 °C for different times. These powders were characterized by X-ray diffraction (XRD), Fourier transform Raman (FT-Raman), Fourier transform infrared (FT-IR), ultraviolet–visible (UV–vis) absorption spectroscopies and photoluminescence (PL) measurements. XRD patterns and FT-Raman spectra showed that these powders present a scheelite-type tetragonal structure without the presence of deleterious phases. FT-IR spectra exhibited a large absorption band situated at around 850.4 cm−1, which is associated to the Mo–O antisymmetric stretching vibrations into the [MoO4] clusters. UV–vis absorption spectra indicated a reduction in the intermediary energy levels within band gap with the processing time evolution. First-principles quantum mechanical calculations based on the density functional theory were employed in order to understand the electronic structure (band structure and density of states) of this material. The powders when excited with different wavelengths (350 nm and 488 nm) presented variations. This phenomenon was explained through a model based in the presence of intermediary energy levels (deep and shallow holes) within the band gap.  相似文献   

8.
The effect of ultrasound (US) stimulation on the shear viscosity of aqueous polyvinyl alcohol (PVA) solution was studied when the solution was exposed to US at 23, 43, 96, and 141 kHz. The US stimulus showed a marked decrease of the shear viscosity of the solution in the order of 43 > 96 > 23 > 141 kHz, respectively, under US power dissipation of 8.5, 8.9, 8.9, and 8.8 W. Subsequently, when US exposure was stopped, the shear viscosity of PVA reverted to its original value. The US stimulation was analyzed with the US power transmitted through the PVA aqueous media. Furthermore, FT-IR spectra measured at different durations of US exposure, suggest that hydrogen bonds in the PVA segments were broken by the US exposure. We conclude that structural changes of the hydrogen bonded crosslinks of PVA were induced to include water molecules for the re-forming of crosslinks of aqueous PVA.  相似文献   

9.
《Solid State Ionics》2006,177(1-2):73-76
Ionic conduction in fluorite-type structure oxide ceramics Ce0.8M0.2O2−δ (M = La, Y, Gd, Sm) at temperature 400–800 °C was systematically studied under wet hydrogen/dry nitrogen atmosphere. On the sintered complex oxides as solid electrolyte, ammonia was synthesized from nitrogen and hydrogen at atmospheric pressure in the solid states proton conducting cell reactor by electrochemical methods, which directly evidenced the protonic conduction in those oxides at intermediate temperature. The rate of evolution of ammonia in Ce0.8M0.2O2−δ (M = La, Y, Gd, Sm) is up to 7.2 × 10 9, 7.5 × 10 9, 7.7 × 10 9, 8.2 × 10 9 mol s 1 cm 2, respectively.  相似文献   

10.
《Solid State Ionics》2006,177(33-34):2923-2930
The thermogravimetric and Mössbauer spectroscopy studies showed that, at atmospheric oxygen pressure, the oxygen content in Ca2Fe2O5 brownmillerite is very close to stoichiometric at 300–1270 K. The orthorhombic lattice of calcium ferrite undergoes a transition from primitive (space group Pnma) to body-centered (I2mb) at 950–1000 K, which is accompanied with decreasing thermal expansion coefficient (TEC) and increasing activation energy for the total conductivity, predominantly p-type electronic. The steady-state oxygen permeation through dense Ca2Fe2O5 ceramics is limited by the bulk ionic conduction. The ion transference numbers in air vary in the range 0.002–0.007 at 1123–1273 K, increasing with temperature. Analysis of stereological factors, which may affect oxygen diffusivity, suggests a dominant role of the ion jumps along octahedral and, possibly, tetrahedral layers of the brownmillerite structure. The ionic conductivity of calcium ferrite is higher than that of Ca2FeAlO5+δ, but lower compared to the oxygen-deficient perovskite phases based on SrFeO3−δ where the diffusion pathways form a three-dimensional network. The average TECs of Ca2Fe2O5 ceramics, calculated from dilatometric data in air, are 13.1 × 10 K 1 at 370–950 K and 11.3 × 10 6 K 1 at 970–1270 K.  相似文献   

11.
《Solid State Ionics》2006,177(15-16):1281-1286
Composite electrolyte comprising phosphotungstic acid (PWA) filler and 1-butyl-3-methyl-imidazolium-tetrafluoroborate (BMImBF4) room temperature ionic liquid (RTIL) in poly(2-hydroxyethyl methacrylate) (PHEMA) matrix has been prepared. The polymer matrix was formed by free radical polymerization of 2-hydroxyethyl methacrylate (HEMA) monomers. BMImBF4 was used as both ionic source and plasticizer, and PWA filler provided the proton conductivity in this system. The interactions and structure changes of the PHEMA-RTIL-PWA composites were investigated by Fourier transform infrared spectra, differential scanning calorimetry, and X-ray diffraction. PWA fillers maintained their Keggin structure within a limited range and enhanced the ionic conductivity of the composite electrolyte. The electrolyte with PWA at the 2 wt.% showed the highest ionic conductivity of 8 × 10 4 S cm 1 at room temperature and 96% relative humidity.  相似文献   

12.
Polaron theory is often used for the study of electrons and holes mobility in semiconductors when longitudinal optical (LO) phonons are generated upon the charge carriers moving. The polaron theory was applied to explain long-wavelength absorptions observed nearby Soret band in the electronic spectra of assemblies of mono-protonated meso-tetraphenylporphine dimer (TPP2H+) that are interpreted as LO-phonons originated due to proton movement. The energy of hole polaron is found to be 1.50 eV at 77 K. Energy of Franck–Condon transitions of LO-phonons generated by hole polaron moving through water confined in the assemblies with distortions of O–H bonds is 0.2653 eV (2138 cm−1). A broad band around 2127 cm1 corresponding the same energy of O–H bonds vibrations is observed in IR spectra of the assemblies consisting of water and mainly of TPP2H+ species in the solid state indicating the presence of similar distortions of the hydrogen bonds. The radius of protonic sphere of 0.202 Å, which was estimated as a polaron quasiparticle moving through the confined water at 77 K, is found in agreement with earlier evaluated one of 0.265 Å that was obtained for proton diffusion at 298 K in similar assemblies.  相似文献   

13.
In this study, an aqueous ionic liquid based ultrasonic assisted extraction (ILUAE) method for the extraction of the four acetophenones, namely 4-hydroxyacetophenone (1), 2,5-dihydroxyacetophenone (2), baishouwubenzophenone (3) and 2,4-dihydroxyacetophenone (4) from the Chinese medicinal plant Cynanchum bungei was developed. Three kinds of aqueous l-alkyl-3-methylimidazolium ionic liquids with different anion and alkyl chain were investigated. The results indicated that ionic liquids (ILs) showed remarkable effects on the extraction efficiency of acetophenones. In addition, the ILUAE, including several ultrasonic parameters, such as the ILs concentration, solvent to solid ratio, power, particle size, temperature, and extraction time have been optimized. Under these optimal conditions (e.g., with 0.6 M [C4MIM]BF4, solvent to solid ratio of 35:1, power of 175 W, particle size of 60–80 mesh, temperature of 25 °C and time of 50 min), this approach gained the highest extraction yields of four acetophenones 286.15, 21.65, 632.58 and 205.38 μg/g, respectively. The proposed approach has been evaluated by comparison with the conventional heat-reflux extraction (HRE) and regular UAE. The results indicated that ILUAE is an alternative method for extracting acetophenones from C. bungei.  相似文献   

14.
Sulfur-containing conjugated polymer was synthesized by the polymerization of phenyl propargyl sulfide by transition metal catalysts such as PdCl2, RuCl3, (NBD)PdCl2, WCl6, and MoCl5. The polymerization proceeded well in homogeneous manner to give a moderate yield of polymer. The chemical structure of poly(phenyl propargyl sulfide) was characterized by NMR (1H–, 13C–), IR, and UV–visible spectroscopy, and elemental analysis to have the conjugated polymer backbone with the designed moieties. The FT-IR spectra of the polymer did not show the acetylenic CC bond stretching (2119 cm−1) and acetylenic C–H bond stretching (3293 cm−1) frequencies of the monomer. The thin polymer film exhibited reversible electrochemical behaviors between the doping and undoping peaks. Poly(phenyl propargyl sulfide) showed the characteristic UV–visible absorption band at 360 nm and blue PL spectrum at 460 nm, corresponding to the photon energy of 2.70 eV. The energy band gap of poly(PPS) was estimated to be 2.77 eV from the analysis of the absorption edge.  相似文献   

15.
《Solid State Ionics》2006,177(37-38):3223-3231
Proton dynamics in (NH4)3H(SO4)2 has been studied by means of 1H solid-state NMR. The 1H magic-angle-spinning (MAS) NMR spectra were traced at room temperature (RT) and at Larmor frequency of 400.13 MHz. 1H static NMR spectra were measured at 200.13 MHz in the range of 135–490 K. 1H spin-lattice relaxation times, T1, were measured at 200.13 and 19.65 MHz in the ranges of 135–490 and 153–456 K, respectively. The 1H chemical shift for the acidic proton (14.7 ppm) indicates strong hydrogen bonds. In phase III, NH4+ reorientation takes place; one type of NH4+ ions reorients with an activation energy (Ea) of 14 kJ mol 1 and the inverse of a frequency factor (τ0) of 0.85 × 10 14 s. In phase II, a very fast local and anisotropic motion of the acidic protons takes place. NH4+ ions start to diffuse translationally, and no proton exchange is observed between NH4+ ions and the acidic protons. In phase I, both NH4+ ions and the acidic protons diffuse translationally. The acidic protons diffuse with parameters of Ea = 27 kJ mol 1 and τ0 = 4.2 × 10 13 s. The translational diffusion of the acidic protons is responsible for the macroscopic proton conductivity, as the NH4+ translational diffusion is slow and proton exchange between NH4+ ions and the acidic protons is negligible.  相似文献   

16.
《Ultrasonics》2014,54(4):1020-1028
This work is focused on the in vitro study of the effects induced by medical ultrasound (US) in murine fibroblast cells (NIH-3T3) at a low-intensity of exposure (spatial peak temporal average intensity Ita < 0.1 W cm2). Conventional 1 MHz and 3 MHz US devices of therapeutic relevance were employed with varying intensity and exposure time parameters. In this framework, upon cells exposure to US, structural changes at the molecular level were evaluated by infrared spectroscopy; alterations in plasma membrane permeability were monitored in terms of uptake efficiency of small cell-impermeable model drug molecules, as measured by fluorescence microscopy and flow cytometry. The results were related to the cell viability and combined with the statistical PCA analysis, confirming that NIH-3T3 cells are sensitive to therapeutic US, mainly at 1 MHz, with time-dependent increases in both efficiency of uptake, recovery of wild-type membrane permeability, and the size of molecules entering 3T3. On the contrary, the exposures from US equipment at 3 MHz show uptakes comparable with untreated samples.  相似文献   

17.
《Ultrasonics sonochemistry》2014,21(6):1933-1938
In this study, manganese oxide (MnO2) nanoparticles were synthesized by sonochemical reduction of KMnO4 using polyethylene glycol (PEG) as a reducing agent as well as structure directing agent under room temperature in short duration of time and characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Scanning electron microscope (SEM), Transmission electron microscopy (TEM) and Brunauer–Emmett–Teller (BET) analysis. A supercapacitor device constructed using the ultrasonically-synthesized MnO2 nanoparticles showed maximum specific capacitance (SC) of 282 Fg−1 in the presence of 1 M Ca(NO3)2 as an electrolyte at a current density of 0.5 mA cm−2 in the potential range from 0.0 to 1.0 V and about 78% of specific capacitance was retained even after 1000 cycles indicating its high electrochemical stability.  相似文献   

18.
The effect of phenothiazine (PTZ) as dopant on PVDF/KI/I2 electrolyte was studied for the fabrication of efficient dye-sensitized solar cell (DSSC). The different weight percentage (wt%) ratios (0, 20, 30, 40 and 50%) of PTZ doped PVDF/KI/I2 electrolyte films were prepared by solution casting method using DMF as a solvent. The following techniques such as Fourier transform infrared (FT-IR), differential scanning calorimetry (DSC), X-ray diffractometer (XRD) and AC-impedance analysis have been employed to characterize the prepared polymer electrolyte films. The FT-IR studies revealed the complex formation between PVDF/KI/I2 and PTZ. The crystalline and amorphous nature of polymer electrolytes were confirmed by DSC and XRD analysis respectively. The ionic conductivities of polymer electrolyte films were calculated from the AC-impedance analysis. The undoped PVDF/KI/I2 electrolyte exhibited the ionic conductivity of 4.68×10−6 S cm−1 and this value was increased to 7.43×10−5 S cm−1 when PTZ was added to PVDF/KI/I2 electrolyte. On comparison with different wt% ratios, the maximum ionic conductivity was observed for 20% PTZ-PVDF/KI/I2 electrolyte. A DSSC assembled with the optimized wt % of PTZ doped PVDF/KI/I2 electrolyte exhibited a power conversion efficiency of 2.92%, than the undoped PVDF/KI/I2 electrolyte (1.41%) at similar conditions. Hence, the 20% PTZ-PVDF/KI/I2 electrolyte was found to be optimal for DSSC applications.  相似文献   

19.
《Solid State Ionics》2006,177(37-38):3285-3296
Oxygen nonstoichiometry, structure and transport properties of the two compositions (La0.6Sr0.4)0.99CoO3−δ (LSC40) and La0.85Sr0.15CoO3−δ (LSC15) were measured. It was found that the oxygen nonstoichiometry as a function of the temperature and oxygen partial pressure could be described using the itinerant electron model. The electrical conductivity, σ, of the materials is high (σ > 500 S cm 1) in the measured temperature range (650–1000 °C) and oxygen partial pressure range (0.209–10 4 atm). At 900 °C the electrical conductivity is 1365 and 1491 S cm 1 in air for LSC40 and LSC15, respectively. A linear correlation between the electrical conductivity and the oxygen vacancy concentration was found for both samples. The mobility of the electron-holes was inversely proportional with the absolute temperature indicating a metallic type conductivity for LSC40. Using electrical conductivity relaxation the chemical diffusion coefficient of oxygen was determined. It was found that accurate values of the chemical diffusion coefficient could only be obtained using a sample with a porous surface coating. The porous surface coating increased the surface exchange reaction thereby unmasking the chemical diffusion coefficient. The ionic conductivity deduced from electrical conductivity relaxation was determined to be 0.45 S cm 1 and 0.01 S cm 1 at 1000 and 650 °C, respectively. The activation energy for the ionic conductivity at a constant vacancy concentration (δ = 0.125) was found to be 0.90 eV.  相似文献   

20.
《Solid State Ionics》2006,177(5-6):549-558
Perovskite-type LaGa0.65Mg0.15Ni0.20O3−δ exhibiting oxygen transport comparable to that in K2NiF4-type nickelates was characterized as a model material for ceramic membrane reactors, employing mechanical tests, dilatometry, oxygen permeability and faradaic efficiency measurements, thermogravimetry (TG), and determination of the total conductivity and Seebeck coefficient in the oxygen partial pressure range from 10 15 Pa to 40 kPa. Within the phase stability domain which is similar to La2NiO4+δ, the defect chemistry of LaGa0.65Mg0.15Ni0.20O3−δ can be adequately described by the ideal solution model with oxygen vacancies and electron holes to be the only mobile defects, assuming that Ni2+ may provide two energetically equivalent sites for hole location. This assumption is in agreement with the density of states, estimated from thermopower, and the coulometric titration and TG data suggesting Ni4+ formation in air at T < 1150 K. The hole conductivity prevailing under oxidizing conditions occurs via small-polaron mechanism as indicated by relatively low, temperature-activated mobility. The ionic transport increases with vacancy concentration on reducing p(O2) and becomes dominant at oxygen pressures below 10 7–10 5 Pa. The average thermal expansion coefficients in air are 11.9 × 10 6 and 18.4 × 10 6 K 1 at 370–850 and 850–1270 K, respectively. The chemical strain of LaGa0.65Mg0.15Ni0.20O3−δ ceramics at 1073–1123 K, induced by the oxygen partial pressure variations, is substantially lower compared to perovskite ferrites. The flexural strength determined by 3-point and 4-point bending tests is 167–189 MPa at room temperature and 85–97 MPa at 773–1173 K. The mechanical properties are almost independent of temperature and oxygen pressure at p(O2) = 1–2.1 × 104 Pa and 773–1173 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号