首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pinus species are important in traditional medicine throughout their ranges, and pine essential oils are of interest in aromatherapy and as topical treatments. In this work, the leaf (needle) essential oils of Pinus ponderosa var. ponderosa and Pinus contorta subsp. contorta from Oregon and Pinus flexilis growing in Idaho, have been obtained by hydrodistillation and analyzed by gas chromatographic techniques. The leaf essential oil of P. ponderosa was dominated by β-pinene (21.5–55.3%), methyl chavicol (8.5–41.5%), α-pinene (3.6–9.6%), δ-3-carene (3.6–6.2%), and α-terpineol (1.4–5.3%). The major components of P. contorta essential oil were β-phellandrene (23.8%), terpinen-4-ol (11.0%). The essential oil of P. flexilis was dominated by α-pinene (37.1%), β-pinene (21.9%), bornyl acetate (12.8%), and camphene (8.5%). Chiral gas chromatography revealed the enantiomeric ratios of α-pinene and limonene to be variable, but (−)-β-pinene predominated in Pinus essential oils.  相似文献   

2.
Neocinnamomum caudatum (Lauraceae) plant is used in the traditional system of medicine and is considered a potential source of edible fruits, spices, flavoring agents and biodiesel. The leaves, bark and roots of the species are used by local communities for the treatment of inflammatory responses, such as allergies, sinusitis and urinary tract infections. However, there is no scientific evidence to support the molecular mechanism through which this plant exerts its anti-inflammatory effect. The aim of the current research was to characterize the chemical constituents of bark (NCB) and leaf (NCL) essential oil of N. caudatum and to elucidate its anti-inflammatory action in lipopolysaccharide (LPS)-treated RAW 264.7 cells. Essential oils extracted by hydrodistillation were further subjected to gas chromatography mass spectrometry (GC-MS) analysis. The major constituents in bark essential oil identified as β-pinene (13.11%), α-cadinol (11.18%) and α-pinene (10.99%), whereas leaf essential oil was found to be rich in β-pinene (45.21%), myrcene (9.97%) and α-pinene (9.27%). Treatment with NCB and NCL at a concentration of 25 µg/mL exerted significant anti-inflammatory activity by significantly reducing LPS-triggered nitric oxide (NO) production to 45.86% and 61.64%, respectively, compared to the LPS-treated group. In the LPS-treated group, the production of proinflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1β, decreased after treatment with essential oil, alleviating the mRNA levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2. The essential oil also inhibited the production of intracellular ROS and attenuated the depletion of mitochondrial membrane potential in a concentration-dependent manner. Pretreatment with NCB also reduced nuclear factor kappa-B (NF-κB)/p65 translocation and elevated the levels of endogenous antioxidant enzymes in LPS-induced macrophages. The present findings, for the first time, demonstrate the anti-inflammatory potential of both bark and leaf essential oils of N. caudatum. The bark essential oil exhibited a significantly more important anti-inflammatory effect than the leaf essential oil and could be used as a potential therapeutic agent for the treatment of inflammatory diseases.  相似文献   

3.
Norway spruce (Picea abies (L.) H. Karst.) is one of the most important commercial tree species distributed naturally in the Boreal and subalpine forest zone of Europe. All parts of spruce trees, including needles, accumulate essential oils with a variety of chemical properties and ecological functions, such as modulating plant–insect communication. Annual needle samples from 15 trees (five from each of three habitats) of 15–17 years old were assayed for essential oils and their major compounds, including α-pinene, β-pinene, (1S)-(−)-α-pinene, and (1R)-(+)-α-pinene across a growing season. Results showed strong positive correlation between percentages of α- and β-pinene isomers (r = 0.69, p < 0.05) and between pinene isomers and essential oils: α-pinene correlated with essential oil stronger (r = 0.62, p < 0.05) than β-pinene (r = 0.33, p < 0.05). Correlation analyses performed with some weather conditions, including average monthly temperature, growing sum of effective temperatures over 5 °C, duration of sunshine, accumulated precipitation, relative humidity, and pressure, showed that temperature is the most important weather condition related to pinene dynamics: negative correlations of moderate strength were established between percentages of α- and β- pinenes and average monthly temperatures (r = −0.36, p < 0.01, n = 75 and r = −0.33, p < 0.01, n = 75, respectively). Out of pinene enantiomers, only (1S)-(−)-α-pinene showed some negative correlation with monthly temperature (r = −0.26, p < 0.05, n = 75). Different patterns of essential oil and pinene dynamics during growing season within separate habitats suggested that some genetic variables of Picea abies might be involved.  相似文献   

4.
Volatile oils from flowers and leaves of C. creticus L. and C. salviifolius L. were extracted by two extraction methods; namely, hydrodistillation and solid-phase micro-extraction (SPME). The chemical composition of essential oils was analyzed by GC and GC–MS. The volatile extracted from leaves and flowers of C. criticus using SPME was dominated by monoterpenes and sesquiterpenes hydrocarbon with α-pinene, camphene and α-cubebene as major components. In hydrodistillation, the oil extracted from leaves was dominated by oxygenated diterpenes and diterpenes hydrocarbon with manoyl oxide and sclarene as major components, whereas, the oil extracted from flowers was dominated by oxygenated diterpenes and diterpenes hydrocarbon with manoyl oxide and abietatriene as major components. The volatile from flowers and leaves of C. salviifolius obtained by SPME were dominated by monoterpenes and sesquiterpenes with δ-3-carene, α-pinene, β-pinene, and E-caryophyllene as major constituents. On the other hand, the oils from flowers and leaves of C. salviifolius obtained by hydrodistillation were dominated by oxygenated diterpenes, diterpenes hydrocarbon and esters with dehydro abietol, abietol, manoyl oxide and methyl octadecenoate as major components. In the leaves, the major components of the oil were manoyl oxide, E-ethyl cinnamate, and Z-ethyl cinnamate. These oils showed weak antioxidant activity when compared to the positive controls α-tocopherol, ascorbic acid, and EDTA, while the crude extracts aq. MeOH, butanol, and water showed good antioxidant activity. Discriminating between the studied plants based on the extraction method was also possible upon applying Principle component analysis (PCA) to the obtained GC–MS data.  相似文献   

5.
Lippia alba (Mill.) N. E. Br. (Verbenaceae) is an aromatic shrub whose essential oils have stood out as a promising source for application in several industrial fields. In this study, the essential oils chemical characterization of eight new L. alba genotypes was performed. The selected materials were collected from the Active Germplasm Bank of the Agronomic Institute and the essential oils were extracted by hydrodistillation. Flow-modulated comprehensive two-dimensional gas chromatography coupled to mass spectrometry (GC×GC-MS) was employed for chemical characterization and evaluation of possible co-eluted compounds. In addition, the chemical analyses were submitted to multivariate statistical analyses. From this investigation, 73 metabolites were identified in the essential oils of the genotypes, from which α-pinene, β-myrcene, 1,8-cineole, linalool, neral, geranial, and caryophyllene oxide were the most abundant compounds among the accessions. This is the first report disclosing α-pinene in higher amounts in L. alba (19.69%). In addition, sabinene, trans-verbenol, myrtenol, (E)-caryophyllene, α-guaiene, germacrene D, and α-bulnesene were also found in relevant quantities in some of the genotypes, and myrtenal and myrtenol could be well separated through the second dimension. Such results contributed to the understanding of the chemical composition of those new genotypes, being important to drive a future industrial applicability and studies in genetic breeding.  相似文献   

6.
Clove (Syzygium aromaticum L. Myrtaceae) is an aromatic plant widely cultivated in tropical and subtropical countries, rich in volatile compounds and antioxidants such as eugenol, β-caryophyllene, and α-humulene. Clove essential oil has received considerable interest due to its wide application in the perfume, cosmetic, health, medical, flavoring, and food industries. Clove essential oil has biological activity relevant to human health, including antimicrobial, antioxidant, and insecticidal activity. The impacts of the extraction method (hydrodistillation, steam distillation, ultrasound-assisted extraction, microwave-assisted extraction, cold pressing, and supercritical fluid extraction) on the concentration of the main volatile compounds in clove essential oil and organic clove extracts are shown. Eugenol is the major compound, accounting for at least 50%. The remaining 10–40% consists of eugenyl acetate, β-caryophyllene, and α-humulene. The main biological activities reported are summarized. Furthermore, the main applications in clove essential oil in the food industry are presented. This review presents new biological applications beneficial for human health, such as anti-inflammatory, analgesic, anesthetic, antinociceptive, and anticancer activity. This review aims to describe the effects of different methods of extracting clove essential oil on its chemical composition and food applications and the biological activities of interest to human health.  相似文献   

7.
The β-carbolines in our diet, mainly including harman and norharman, are a group of biologically active, naturally occurring plant-derived alkaloids. Fragrant sesame seed oil is one of the most popular flavor edible oils in China. Considering that sesame seeds are roasted at 200–240 °C during the processing of flavor sesame seed oils, it is meaningful to investigate the levels of β-carboline compounds in various sesame seed oils. In this work, the levels of β-carbolines (harman and norharman) in different types of sesame seed oils in China (e.g., pressed fragrant sesame oil, ground fragrant sesame oil) have been determined systematically. The results showed that the levels of total β-carbolines in pressed fragrant sesame oils (700.5~2423.2 μg/kg) were higher than that in ground fragrant sesame oils (660.4~1171.7 μg/kg). Roasting sesame seeds at high temperatures (200–240 °C) led to higher levels of β-carbolines (660~2400 μg/kg) in fragrant sesame seed oils. In addition, the loss of tryptophan might be attributed to the formation of β-carbolines in sesame seeds during the roasting process. In general, fragrant sesame seed oils (pressed fragrant sesame oils, ground fragrant sesame oils) contain higher levels of β-carbolines due to the formation of harman and norharman during the roasting sesame seed process.  相似文献   

8.
《Analytical letters》2012,45(13):1894-1909
Three different isolation techniques, specifically microwave-assisted hydrodistillation (MAHD), ultrasound-assisted extraction (UAE), and conventional hydrodistillation (HD) were employed to obtain essential oils from whole plants, leaves, roots, and stems of Perilla frutescens. The essential oils were analyzed using gas chromatography with flame ionization detection and gas chromatography with mass spectrometry. Variations in chemical composition were observed; these were attributed to differences in plant organs. Variations in the percentages of the main constituents of the oils extracted based on plant organ were irregular and affected the quantity and composition of the oils. Oil yields were affected by the method of extraction and extraction organ variation. The maximum volume of oil was extracted from leaves via MAHD and the minimum was extracted from roots via UAE. Oil yields ranged from 0.05% to 0.53%. The contents of essential oil varied significantly with the plant organ. In the essential oils of the plant parts studied were showed a predominance of oxygenated monoterpenes. Variation of extraction methods and organs may influence the oil components either qualitatively or quantitatively.  相似文献   

9.
Hedyosmum racemosum (Ruiz & Pav.) G. is a native species of Ecuador used in traditional medicine for treatment of rheumatism, bronchitis, cold, cough, asthma, bone pain, and stomach pain. In this study, fresh H. racemosum leaves of male and female specimens were collected and subjected to hydrodistillation for the extraction of the essential oil. The chemical composition of male and female essential oil was determined by gas chromatography–gas chromatography equipped with a flame ionization detector and coupled to a mass spectrometer using a non-polar and a polar chromatographic column. The antibacterial activity was assayed against five Gram-positive and two Gram-negative bacteria, and two dermatophytes fungi. The scavenging radical properties of the essential oil were evaluated by DPPH and ABTS assays. The chemical analysis allowed us to identify forty-three compounds that represent more than 98% of the total composition. In the non-polar and polar column, α-phellandrene was the principal constituent in male (28.24 and 25.90%) and female (26.47 and 23.90%) essential oil. Other main compounds were methyl chavicol, germacrene D, methyl eugenol, and α-pinene. Female essential oil presented a strong activity against Klebsiella pneumoniae (ATCC 9997) with an minimum inhibitory concentration (MIC) of 500 μg/mL and a scavenging capacity SC50 of 800 µg/mL.  相似文献   

10.
Essential oils of plants have been used widely in cosmetic preparations. Being both perfuming and active ingredients, the functions of essential oils mean they are high-value ingredients. In this study, the leaf of Etlingera elatior (Jack) or Torch ginger was used. The essential oils (EO) were prepared by conventional hydrodistillation (HD) and microwave-assisted hydrodistillation (MAHD). The volatile compounds of EOs were analyzed by gas chromatography spectroscopy (GC-MS). The antioxidant activities by means of DPPH radical scavenging and ferric-reducing antioxidant power (FRAP) were determined. The inhibition of tyrosinase activity was investigated. The cytotoxicity was performed against human fibroblast cell lines (NIH/3T3) and melanoma cell lines (A375 and B16F10). The decreasing melanin content was measured in melanoma cell lines. The resulting essential oils were detected for 41 compounds from HD extraction dominants by terpenes, namely sesquiterpenes (48.499%) and monoterpenes (19.419%), while 26 compounds were detected from MAHD with the fatty alcohols as the major group. The higher antioxidant activities were found in HD EO (IC50 of 16.25 ± 0.09 mg/mL from DPPH assay and 0.91 ± 0.01 mg TEAC/g extract from FRAP assay). The survival of normal fibroblast cell lines remained at 90% at 500 µg/mL HD EO, where the EO possessed the half-maximal toxicity dose (TD50) of 214.85 ± 4.647 and 241.128 ± 2.134 μg/mL on B16F10 and A375 cell lines, respectively. This could suggest that the EO is highly selective against the melanoma cell lines. The melanin content was decreased at the half-maximum efficacy (IC50) at 252.12 ± 3.02 and 253.56 ± 3.65 in the A375 and B1610 cell lines, respectively, which were approximately 2.8-fold lower than kojic acid, the standard compound. The results of this study evidence the use of Etlingera elatior (Jack) leaf as a source of essential oil as an active agent in cosmetics.  相似文献   

11.
Houttuynia cordata Thunb. is a medicinal and edible plant that has been commonly used in traditional Chinese medicine since ancient times. This study used headspace solid-phase microextraction (HS-SPME) and direct injection, combined with gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS), to identify the volatile compounds in H. cordata. Extraction from different parts of the plant using different extraction techniques for the identification of volatile compounds were determined. A total of 93 volatile components were analyzed in the leaves, stems, rhizomes, and whole plant samples of H. cordata. The leaves contained more (Z)-3-hexenal, β-myrcene, (Z)-β-ocimene, and (4E,6E)-allo-ocimene; the stems contained more geranyl acetate and nerolidol; and rhizomes contained more α-pinene, β-pinene, limonene, 2-undecanone, and decanoyl acetaldehyde. Among them, the essential oil extracted by HS-SPME could produce more monoterpenes, while direct injection could obtain higher contents of aliphatic ketones, terpene esters, sesquiterpenes, and was more conducive to the extraction of 2-undecanone and decanoyl acetaldehyde.  相似文献   

12.
《印度化学会志》2021,98(11):100201
Microwave assisted hydro-distillation (MAHD) and conventional hydro-distillation (HD) techniques were compared in the extraction of essential oils from Amomum subulatum seeds. The time required for MAHD method (70 ​min) is lesser than that for HD method (4 ​h). There is a slight increase in the yield of extracted oil in MAHD method (3.35%) compared to HD (3%). Gas chromatography–mass spectrometry GC-MS results show that MAHD extracted essential oil was wealthier in oxygenated compounds. 1, 8-Cineole was found to be a major compound in case of both the essential oil, followed by α-pinene. In MAHD the percentage of the major oxygenated monoterpene (1, 8- cineol) slightly increases from 88% to 89% as compared to hydrodistillation. Contrarily to this, the percentage of monoterpene hydrocarbon was decreased in MAHD than HD extracted oil. MAHD and HD extracted oils show good antibacterial activities against gram-negative and gram-positive bacteria. MAHD extracted oil shows better antibacterial activity than HD extracted against both gram positive and gram-negative bacteria. 2, 2-diphenyl-1-picrylhydrazyl (DPPH•) radical scavenging antioxidant activities show that MAHD extract has better inhibition percentage than HD extract, and the half-maximal inhibitory concentration IC50 value of MAHD was less than HD extracted oil.  相似文献   

13.
The chemical composition and biological activities of the essential oils from the leaves, stems, and roots of Kadsura coccinea (K. coccinea) were investigated. The essential oils were extracted by hydro distillation and analyzed by gas chromatography mass spectrometry (GC-MS) and gas chromatography with flame ionization detector (GC-FID). Antioxidant activities of the essential oils were examined with DPPH radical scavenging assay, ABTS cation radical scavenging assay, and ferric reducing antioxidant power assay. Antimicrobial activities were evaluated by determining minimum inhibitory concentrations (MIC) and minimum microbiocidal concentrations (MMC). Acetylcholinesterase and butyrylcholinesterase inhibitory activity of the essential oils were also tested. A total of 46, 44, and 47 components were identified in the leaf, stem, and root oils, representing 95.66%, 97.35%, and 92.72% of total composition, respectively. The major compounds of three essential oils were α-pinene (16.60–42.02%), β-pinene (10.03–18.82%), camphene (1.56–10.95%), borneol (0.50–7.71%), δ-cadinene (1.52–7.06%), and β-elemene (1.86–4.45%). The essential oils were found to have weak antioxidant activities and cholinesterase inhibition activities. The essential oils showed more inhibitory effects against Staphylococcus aureus (S. aureus) than those of other strains. The highest antimicrobial activity was observed in the root oil against S. aureus, with MIC of 0.78 mg/mL. Therefore, K. coccinea essential oils might be considered as a natural antibacterial agent against S. aureus with potential application in food and pharmaceutical industries.  相似文献   

14.
Patchouli extracts and oils extracted from Pogostemon cablin are essential raw material for the perfume and cosmetics industries, in addition to being used as a natural additive for food flavoring. Steam distillation is a standard method used for plant extraction. However, this method causes thermal degradation of some essential components of the oil. In this study, patchouli was extracted with supercritical carbon dioxide (SC-CO2) under different conditions of pressure (10–30 MPa) and temperature (40–80 °C). The chemical components of the crude extracted oil and the functional group were characterized using gas chromatography-mass spectrometry (GC-MS) and Fourier Transform Infrared Spectroscopy (FT-IR). The extraction with supercritical carbon dioxide was shown to provide a higher yield (12.41%) at a pressure of 20 MPa and a temperature of 80 °C. Patchouli alcohol, Azulene, δ-Guaiene, and Seychellene are the main bioactive compounds that GC-MS results have identified. FTIR spectra showed alcohol, aldehyde, and aromatic ring bond stretching peaks. Extraction of patchouli with supercritical carbon dioxide provided a higher yield and a better quality of the crude patchouli oil.  相似文献   

15.
The study was carried out to determine the effects of gamma irradiation on the volatile flavor components including essential oils, of Angelica gigas Nakai. The volatile organic compounds from non- and irradiated A. gigas Nakai at doses of 1, 3, 5, 10 and 20 kGy were extracted by a simultaneous steam distillation and extraction (SDE) method and identified by GC/MS analysis. A total of 116 compounds were identified and quantified from non- and irradiated A. gigas Nakai. The major volatile compounds were identified 2,4,6-trimethyl heptane, α-pinene, camphene, α-limonene, β-eudesmol, α-murrolene and sphatulenol. Among these compounds, the amount of essential oils in non-irradiated sample were 77.13%, and the irradiated samples at doses of 1, 3, 5, 10 and 20 kGy were 84.98%, 83.70%, 83.94%, 82.84% and 82.58%, respectively. Oxygenated terpenes such as β-eudesmol, α-eudesmol, and verbenone were increased after irradiation but did not correlate with the irradiation dose. The yields of active substances such as essential oil were increased after irradiation; however, the yields of essential oils and the irradiation dose were not correlated. Thus, the profile of composition volatiles of A. gigas Nakai did not change with irradiation.  相似文献   

16.
Salvia officinalis L. (sage) is one of the most appreciated plants for its plethora of biologically active compounds. The objective of our research was a comparative study, in the Mediterranean context, of chemical composition, anticholinesterases, and antioxidant properties of essential oils (EOs) from sage collected in three areas (S1–S3) of Southern Italy. EOs were extracted by hydrodistillation and analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory properties were investigated by employing Ellman’s method. Four in vitro assays, namely, 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), ferric-reducing ability power (FRAP), and β-carotene bleaching tests, were used to study the antioxidant effects. Camphor (16.16–18.92%), 1,8-cineole (8.80–9.86%), β-pinene (3.08–9.14%), camphene (6.27–8.08%), and α-thujone (1.17–9.26%) are identified as the most abundant constituents. However, the content of these constituents varied depending on environmental factors and pedoclimatic conditions. Principal component analysis (PCA) was performed. Based on Relative Antioxidant Capacity Index (RACI), S2 essential oil exhibited the highest radical potential with an IC50 value of 20.64 μg/mL in ABTS test and presented the highest protection of lipid peroxidation with IC50 values of 38.06 and 46.32 μg/mL after 30 and 60 min of incubation, respectively. The most promising inhibitory activity against BChE was found for S3 sample (IC50 of 33.13 μg/mL).  相似文献   

17.
The present work describes the use of Centrifugal Partition Chromatography (CPC) for the bio-guided isolation of repellent active volatile compounds from essential oils. Five essential oils (EOs) obtained from three Pinus and two Juniperus species were initially analyzed by gas chromatography–mass spectrometry (GC/MS) and evaluated for their repellent properties against Aedes albopictus. The essential oil from needles of P. pinea (PPI) presented the higher activity, showing 82.4% repellency at a dose of 0.2 μL/cm2. The above EO, together with the EO from the fruits of J. oxycedrus subsp. deltoides (JOX), were further analyzed by CPC using the biphasic system n-Heptane/ACN/BuOH in ratio 1.6/1.6/0.2 (v/v/v). The analysis of PPI essential oil resulted in the recovery of (−)-limonene, guaiol and simple mixtures of (−)-limonene/β-pheladrene, while the fractionation of JOX EO led to the recovery of β-myrcene, germacrene-D, and mixtures of α-pinene/β-pinene (ratio 70/30) and α-pinene/germacrene D (ratio 65/45). All isolated compounds and recovered mixtures were tested for their repellent activity. From them, (−)-limonene, guaiol, germacrene-D as well the mixtures of (−)-limonene/β-pheladrene presented significant repellent activity (>97% repellency) against Ae. albopictus. The present methodology could be a valuable tool in the effort to develop potent mosquito repellents which are environmentally friendly.  相似文献   

18.
Sage, Salvia officinalis L., is used worldwide as an aromatic herb for culinary purposes as well as a traditional medicinal agent for various ailments. Current investigations exhibited the effects of extended dryings of the herb on the yields, composition, oil quality, and hepatoprotective as well as anti-cancer biological activities of the hydrodistillation-obtained essential oils from the aerial parts of the plant. The essential oils’ yields, compositions, and biological activities levels of the fresh and differently timed and room-temperature dried herbs differed significantly. The lowest yields of the essential oil were obtained from the fresh herbs (FH, 631 mg, 0.16%), while the highest yield was obtained from the two-week dried herbs (2WDH, 1102 mg, 0.28%). A notable decrease in monoterpenes, with increment in the sesquiterpene constituents, was observed for the FH-based essential oil as compared to all the other batches of the essential oils obtained from the different-timed dried herbs. Additionally, characteristic chemotypic constituents of sage, i.e., α-pinene, camphene, β-pinene, myrcene, 1, 8-cineole, α-thujone, and camphor, were present in significantly higher proportions in all the dried herbs’ essential oils as compared to the FH-based essential oil. The in vivo hepatoprotective activity demonstrated significant reductions in the levels of AST, ALT, and ALP, as well as a significant increase in the total protein (p < 0.05) contents level, as compared to the acetaminophen (AAP) administered experimental group of rats. A significant reduction (p < 0.05) in the ALT level was demonstrated by the 4WDH-based essential oil in comparison to the FH-based essential oil. The levels of creatinine, cholesterol, and triglycerides were reduced (p < 0.05) in the pre-treated rats by the essential oil batches, with non-significant differences found among them as a result of the herbs dryings based oils. A notable increase in the viability of the cells, and total antioxidant capacity (TAOxC) levels, together with the reduction in malondialdehyde (MDA) levels were observed by the essential oils obtained from all the batches as compared with the AAP-treated cell-lines, HepG-2, HeLa, and MCF-7, that indicated the in vitro hepatoprotective effects of the sage essential oils. However, significant improvements in the in vivo and in vitro hepatoprotective activities with the 4WDH-based oil, as compared to all other essential oil-batches and silymarin standard demonstrated the beneficial effects of the drying protocol for the herb for its medicinal purposes.  相似文献   

19.
Eugenia florida DC. belongs to the Myrtaceae family, which is present in almost all of Brazil. This species is popularly known as pitanga-preta or guamirim and is used in folk medicine to treat gastrointestinal problems. In this study, two specimens of Eugenia florida (Efl) were collected in different areas of the same region. Specimen A (EflA) was collected in an area of secondary forest (capoeira), while specimen B (EflB) was collected in a floodplain area. The essential oils (EOs) were extracted from both specimens of Eugenia florida by means of hydrodistillation. Gas chromatography coupled to mass spectrometry (GC/MS) was used to identify the volatile compounds present, and the antioxidant capacity of the EOs was determined by antioxidant capacity (AC-DPPH) and the Trolox equivalent antioxidant (TEAC) assay. For E. florida, limonene (11.98%), spathulenol (10.94%) and α-pinene (5.21%) were identified as the main compounds of the EO extracted from sample A, while sample B comprised selina-3,11-dien-6α-ol (12.03%), eremoligenol (11.0%) and γ-elemene (10.70%). This difference in chemical composition impacted the antioxidant activity of the EOs between the studied samples, especially in sample B of E. florida. This study is the first to report on the antioxidant activity of Eugenia florida DC. essential oils.  相似文献   

20.
The medicinal potential and volatile composition of different parts of three cultivars of grapefruit (Citrus paradisi) were evaluated for their toxicity and anti-inflammatory activities. Fresh leaf and fruit peel were separately isolated by hydrodistillation for 4 h. The essential oils were subjected to GC/GC-MS analysis for chemical profile. Toxicity of the essential oils in mice were evaluated using Lorke’s method, while an anti-inflammatory assay was performed in a rat model using egg albumin-induced oedema. The oils obtained were light yellow in colour, and odour varied from strong citrus smell to mild. Percentage yield of fresh peel oil (0.34–0.57%) was greater than the fresh leaf oil yield (0.21–0.34%). D-limonene (86.70–89.90%) was the major compound identified in the leaf oil, while β-phellandrene (90.00–91.01%) dominated the peel oil. At a dosage level of 5000 mg/kg, none of the oils showed mortality in mice. An anti-inflammatory bioassay revealed that all the oils caused a significant (p < 0.05–0.01) reduction in oedema size when compared to the negative control group throughout the 5 h post induction assessment period. The study reveals that the oils are non-toxic and demonstrate significant anti-inflammatory activity. Our findings suggest that the leaf and peel oils obtained from waste parts of grapefruit plants can be useful as flavouring agents, as well as anti-inflammatory agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号