首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 15 毫秒
1.
Currently, there are no radiation detectors that can be used for routine measurements of linear energy transfer (LET) in particle therapy clinics. In this work, we characterized the LET dependence of Al2O3:C optically stimulated luminescence (OSL) detectors (OSLDs) exposed to therapeutic proton beams in order to evaluate their potential for clinical LET measurements. We evaluated OSLDs that were irradiated with an absorbed dose to water of 0.2 Gy in therapeutic proton beams with average energies ranging between approximately 25 MeV and 200 MeV, resulting in LET in water values between 0.45 and 2.29 keV/μm. We examined two properties of the OSL emission signal in terms of LET dependence: the signal intensities of the blue and ultraviolet (UV) emission bands, and the shapes of the OSL curves. We found that the signal intensity of the UV emission band increased consistently with LET within the range investigated, whereas the intensity of the blue emission band remained constant. Our results also demonstrated that the OSL curve shapes were more LET dependent for signals containing both the blue and UV emission bands than for signals containing only one of the bands. Both metrics we examined in this study – the relative UV/blue emission signal intensities and OSL curve shapes – show potential for LET detection in proton therapy.  相似文献   

2.
Optically stimulated luminescence (OSL) detectors, which are widely used in radiation protection, offer a number of potential advantages for radiotherapy dosimetry. In this study we characterized 1-μl of OSL droplets consisting of a mixture of Al2O3:C powder and a photo-curable polymer, in addition to results described in a previous work (Nascimento et al., 2013). The concentration test showed that droplets have a higher spatial resolution than other commonly used Al2O3:C-based detectors. Our results from the dose response, reproducibility and dependence with accumulative dose were obtained for droplets with a powder/polymer concentration that showed a high Signal to Noise Ratio (SNR) without compromising the droplet malleability. Additional test results show the response of such droplets in percentage depth dose curves and dose profiles of clinical beams.  相似文献   

3.
In the present work policrystals of α − Al2O3 doped with terbium were synthesized using the solvent evaporation method. The samples were prepared using Al(NO3)3·9H2O and Tb(NO3)3·5H2O reagents, with Tb concentrations between 1 and 5 mol% and thermally treated at high temperature above ∼1400 °C. X-ray diffraction measurements showed the α-phase formation of samples. TL glow curve presented an intense peak at ∼190 °C and two other with low intensity at 290 and 350 °C after gamma irradiation. The best doping concentration which presented high luminescence was the sample doped with 3 mol% of Tb. TL spectra and fluorescence measurements showed similar luminescence spectra with lines attribute to Tb3+ ions. A linear behavior to gamma dose between 1 and 20 Gy was observed in TL, using 190 °C peak as well as in OSL signal, this last carried out using 532 nm wavelength stimulation.  相似文献   

4.
The thermoluminescence (TL) and optically stimulated luminescence (OSL) response of Al2O3 dosimeters to high-energy heavy charged particles (HCP) has been studied using the heavy ion medical accelarator at Chiba, Japan. The samples were Al2O3 single-crystal chips, of the type usually known as TLD-500, and LuxelTM dosimeters (Al2O3:C powder in plastic) from Landauer Inc. The samples were exposed to 4He (150 MeV/u), 12C (400 MeV/u), 28Si (490 MeV/u) and 56Fe (500 MeV/u) ions, with linear energy transfer values covering the range from 2.26 to 189 keV/μm in water and doses from 1 to 100 mGy (to water). A 90Sr/90Y beta source, calibrated against a 60Co secondary standard, was used for calibration purposes. For OSL, we used both continuous-wave OSL measurements (CW-OSL, using green light stimulation at 525 nm) and pulsed OSL measurements (POSL, using 532 nm stimulation from a Nd:YAG Q-switched laser). The efficiencies (ηHCP,γ) of the different HCPs at producing OSL or TL were observed to depend not only upon the linear energy transfer (LET) of the HCP, but also upon the sample type (single crystal chip or LuxelTM) and the luminescence method used to define the signal—i.e. TL, CW-OSL initial intensity, CW-OSL total area, or POSL. Observed changes in shape of the decay curve lead to potential methods for extracting LET information of unknown radiation fields. A discussion of the results is given, including the potential use of OSL from Al2O3 in the areas of space radiation dosimetry and radiation oncology.  相似文献   

5.
The thermoluminescence (TL) and optically stimulated luminescence (OSL) response of Al2O3 dosimeters to high-energy heavy charged particles (HCP) has been studied using the heavy ion medical accelarator at Chiba, Japan. The samples were Al2O3 single-crystal chips, of the type usually known as TLD-500, and LuxelTM dosimeters (Al2O3:C powder in plastic) from Landauer Inc. The samples were exposed to 4He (150 MeV/u), 12C (400 MeV/u), 28Si (490 MeV/u) and 56Fe (500 MeV/u) ions, with linear energy transfer values covering the range from 2.26 to 189 keV/μm in water and doses from 1 to 100 mGy (to water). A 90Sr/90Y beta source, calibrated against a 60Co secondary standard, was used for calibration purposes. For OSL, we used both continuous-wave OSL measurements (CW-OSL, using green light stimulation at 525 nm) and pulsed OSL measurements (POSL, using 532 nm stimulation from a Nd:YAG Q-switched laser). The efficiencies (ηHCP,γ) of the different HCPs at producing OSL or TL were observed to depend not only upon the linear energy transfer (LET) of the HCP, but also upon the sample type (single crystal chip or LuxelTM) and the luminescence method used to define the signal—i.e. TL, CW-OSL initial intensity, CW-OSL total area, or POSL. Observed changes in shape of the decay curve lead to potential methods for extracting LET information of unknown radiation fields. A discussion of the results is given, including the potential use of OSL from Al2O3 in the areas of space radiation dosimetry and radiation oncology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号