首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A bioactive coating has the ability to create a strong interface between bone tissue and implant. Chitosan, a biopolymer derived from the exoskeletons of shellfish, exhibits many bioactive properties that make it an ideal material for use as a coating such as antibacterial, biodegradable, non-toxic, and the ability to attract and promote bone cell growth and organized bone formation. A previous study reported on the bonding of chitosan to a titanium surface using a three-step process. In the current study, 86.4% de-acetylated chitosan coatings were bound to implant quality titanium in a two-step process that involved the deposition of triethoxsilylbutyraldehyde (TESBA) in toluene, followed by a reaction between the aldehyde of TESBA with chitosan. The chitosan coatings were examined on two different metal treatments to determine if any major differences in the ability of titanium to bind chitosan could be detected. The surface of the titanium metal and the individual reaction steps were examined using X-ray photoelectron spectroscopy (XPS). Following the deposition of TESBA, significant changes were seen in the amounts of oxygen, silicon, carbon, and titanium present on the titanium surface, which were consistent with the anticipated reaction steps. It was demonstrated that more TESBA was bound to the piranha-treated titanium surface as compared to the passivated titanium surface. The two different silane molecules, aminopropyltriethoxysilane (APTES) and TESBA, did not affect the chemistry of the resultant chitosan films. XPS showed that both the formation of unwanted polysiloxanes and the removal of the reactive terminal groups were prevented by using toluene as the carrier solvent to bond TESBA to the titanium surfaces, instead of an aqueous solvent. Qualitatively, the chitosan films demonstrated improved adhesion after using toluene, as the films remained attached to the titanium surface even when placed under the ultra-high vacuum necessary for XPS, unlike the chitosan films deposited using an aqueous solvent, which were removed when exposed to the ultra-high vacuum environment of XPS.  相似文献   

2.
以溶胶-凝胶法制备掺钛干凝胶,采用冰乙酸控制钛酸四丁酯水解,结合钛源与硅源独立预水解技术制备前体掺钛溶胶和凝胶。考察了溶剂量、抑制剂量和掺钛量对溶胶稳定性和均匀性的影响,以及老化、干燥条件和掺钛量对凝胶均匀性的影响,并优化了工艺参数。结果表明,冰乙酸能够有效地控制钛源水解并改善溶胶均匀性,结合钛源和硅源独立预水解技术,能够可控地制备出掺钛溶胶。在乙醇与醇盐物质的量比为5、冰乙酸与钛酸四丁酯物质的量比为6、钛硅原子数比为2%~20%的条件下可以得到均匀、稳定的溶胶。钛硅原子数比低于10%的溶胶在100℃老化24h,100℃开放条件下干燥24h能够形成均匀的干凝胶。钛硅原子数比高于10%的凝胶在干燥过程中析出氯化钠,得不到均匀的凝胶。  相似文献   

3.
Titanium oxide ceramic coatings were prepared by micro-arc oxidation (MAO) in galvanostatic regime on biomedical NiTi alloy in H3PO4 electrolyte using DC power supply. The surface of the coating exhibited a typical MAO porous and rough structure. The XPS analysis indicated that the coatings were mainly consisted of O, Ti, P, and a little amount of Ni, and the concentration of Ni was greatly reduced compared to that of the NiTi substrate. The TF-XRD analysis revealed that MAO coating was composed of amorphous titanium oxide. The coatings were tightly adhesive to the substrates with the bonding strength more than 45 MPa, which was suitable for medical applications. The curves of potentiodynamic porlarization indicated that the corrosion resistance of NiTi alloy was significantly improved due to titanium oxide formation on NiTi alloy by MAO.  相似文献   

4.
Sphene/titania composite coatings were fabricated on titanium by a hybrid technique of microarc oxidation (MAO) and heat treatment. The high-applied voltages promote the formation of sphene in the MAO coatings after heat-treatment. Heat treatment could change the surface morphology of the MAO coatings such as roughness, macropores size and density and the thickness of the MAO coatings. Increasing the heat-treatment temperature decreased the atomic concentration ratios of Ti/Si and Ti/Ca of the MAO coatings. The chemical states of Ti4+, Ca2+, Si2+ and O2− were observed on all the coatings. Additionally, Ti2+ was detected in the MAO and heat-treated MAO coatings at 600 and 700 °C. The heat-treatment has obvious effect on the chemical states of Si, Ti and O elements due to the formation of sphene and oxidation of TiO phase of the MAO coating, but did not affect that of Ca. In the heat-treated MAO coatings at 800 °C (MAO-H8), the titanium surface shows a MAO top layer and oxidized interior layer. A concentration gradient in components in the MAO layer of the MAO-H8 coating was formed.  相似文献   

5.
于松楠  吴汉华  陈根余  袁鑫  李乐 《物理学报》2011,60(2):28104-028104
利用自制多功能微弧氧化(MAO)电源,在保持电学参数和处理时间不变的条件下对TC4钛合金表面进行了MAO处理,研究了Al(OH)3溶胶浓度对钛合金MAO膜的生长特性、微观结构、相结构和电致变色特性的影响.结果表明:随着Al(OH)3溶胶浓度(体积分数)C的增加,膜层的生长速率由慢到快逐渐增加,膜表面微孔尺寸和粗糙度逐渐增大,而微孔密度逐渐减小;当C≤10%时,膜层由锐钛矿相TiO2组成,而当C>10%时,膜层中开始出现金红石相TiO2并随着C的增加其相对含量逐渐增大,并在C=40%时,膜层全部由金红石相TiO2组成;在pH=2.0的HCl溶液中的循环伏安测试结果表明,C≤20%制备试样的膜层颜色变化不明显,随着C的进一步增加,制备试样的膜层颜色变化逐渐明显,并在C=40%时,其着色呈蓝色且色泽均匀;该试样在循环伏安测试过程中还表现出了良好的稳定性和可逆性. 关键词: 微弧氧化 氧化膜 微观结构 电致变色  相似文献   

6.
The formation of the Si/Ti interface during the deposition of silicon on titanium polycrystalline substrates has been studied at room temperature (RT) using X-ray photoelectron spectroscopy (XPS), angle-resolved XPS (ARXPS), ultraviolet photoelectron spectroscopy (UPS) and ion scattering spectroscopy (ISS). The experimental results are consistent with a two-stage mechanism for Si growth: a first stage characterized by the simultaneous formation of a uniform titanium silicide layer, that reaches a limiting thickness of ∼3 monolayer (ML), and pure silicon islands 1 ML thick that grow on top of this layer up to coalescence, followed by a second stage in which pure silicon islands, with an average thickness of 9 ML, grow on top of the uniform titanium silicide layer + pure silicon ML structure formed during the first stage. As a whole, pure silicon species grows according to a Stranski-Krastanov mechanism, where the first ML is formed during the first stage and the islands during the second stage. The comparison of Ti/Si and Si/Ti interfaces shows that the structure and composition of the interface do not depend substantially on the deposition sequence, suggesting that the bulk chemistry of the compound formed at the interface dominates over the surface kinetics and the bulk substrate chemistry in determining the composition and structure of the interface.  相似文献   

7.
In this work, plasma enhanced chemical vapour deposition was used to prepare hydrogenated amorphous carbon films (a-C:H) on different substrates over a wide range of thickness. In order to observe clear substrate effect the films were produced under identical growth conditions. Raman and near edge X-ray absorption fine structure (NEXAFS) spectroscopies were employed to probe the chemical bonding of the films. For the films deposited on silicon substrates, the Raman ID/IG ratio and G-peak positions were constant for most thickness. For metallic and polymeric substrates, these parameters increased with film thickness, suggesting a change from a sp3-bonded hydrogenated structure to a more sp2 network, NEXAFS results also indicate a higher sp2 content of a-C:H films grown on metals than silicon. The metals, which are poor carbide precursors, gave carbon films with low adhesion, easily delaminated from the substrate. The delamination can be decreased/eliminated by deposition of a thin (∼10 nm) silicon layer on stainless steel substrates prior to a-C:H coatings. Additionally we noted the electrical resistivity decreased with thickness and higher dielectric breakdown strength for a-C:H on silicon substrate.  相似文献   

8.
To correlate flat titanium film surface properties with deposition parameters, titanium flat thin films were systematically deposited on glass substrates with various thicknesses and evaporation rates by electron-beam evaporation. The chemical compositions, crystal structure, surface topographies as well as wettability were investigated by using X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), atomic force microscopy (AFM) and water contact angle measurement, respectively. The films consisted mainly of TiO2. Small percentages of Ti2O3 and metallic Ti were also found at the film surface using high-resolution XPS analysis. Quantitative XPS showed little differences regarding elemental compositions among different groups of films. The films were obtained by varying the deposition rate and the film thickness, respectively. XRD data showed consistent reflection patterns of the different titanium samples deposited using different film thicknesses. Without exception measurements of all samples exhibited contact angles of 80° ± 5°. Quantitative AFM characterization demonstrated good correlation tendency between surface roughness and film thickness or evaporation rate, respectively. It is important to notice that titanium films with different sizes of grains on their surfaces but having the same chemistry and film bulk structure can be obtained in a controllable way. By increasing the film thickness and evaporation rate, the surface roughness increased. The surface morphology and grain size growth displayed a corresponding trend. Therefore, the control of these parameters allows us to prepare titanium films with desired surface properties in a controllable and reproducible way for further biological investigations of these materials.  相似文献   

9.
The surface properties of nanofibres are of importance in various applications. In this work, electrospun polyamide nanofibres were used as substrates for creating functional nanostructures on the nanofibre surfaces. A RF magnetron sputter coating was used to deposit the functional layer of titanium dioxide (TiO2) onto the nanofibres. Atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and environmental scanning electron microscopy (ESEM) were employed to study the topography, grain structure and wetting of the nanofibre surfaces, respectively. The AFM results indicated a significant difference in the morphology of the nanofibres before and after the TiO2 sputter coating. The XRD analysis showed the amorphous structures of the TiO2 deposition layer. XPS spectra reflected the chemical features of the deposited nanostructures. The ESEM observation revealed that the surface wettability of TiO2 sputter coated nanofibres was significantly improved after UV irradiation.  相似文献   

10.
Grainy titania coatings are prepared by microarc oxidation on pure titanium (TA2) substrates in a Na2SiO3NaF electrolytic solution. The coating thickness is measured by an optical microscope with a CCD camera. Scanning electron microscope (SEM) and x-ray diffraction (XRD) are employed to characterize the microstructure and phase composition of coatings. The results show that the coating thickness increases linearly as the treatment time increases. The coatings are mainly composed of anatase and rutile (TiO2). With the increase of treatment time, the predominant phase composition varies from anatase to rutile, which indicates that phase transformation of anatase into rutile occurs in the oxidizing process. Meanwhile, the size of grains existing on the coating surface increases and thus the surface becomes much coarser.  相似文献   

11.
The growth of anodic coatings on titanium, under sparking conditions, is investigated in tracer experiments, using alkaline silicate and phosphate electrolytes. Coatings are formed sequentially in each electrolyte, with phosphorus and silicon located by energy-dispersive X-ray analysis and glow discharge optical emission spectroscopy. The coatings, containing anatase, rutile and amorphous oxide, with incorporated phosphorus and silicon species, are shown to grow by discrete thickening at sites of dielectric breakdown. New material is found near the metal, within the coating bulk and at the coating surface. Approximately 10–30% of the new material is located near to the coating surface and about 40–60% near to the metal. The findings are attributed to the formation of breakdown channels allowing access of electrolyte species to the inner parts of the coating and to subsequent rapid formation of coating material, under high temperatures, associated with increased local current density, and high pressures, associated with volume constraints on oxide growth and gas generation.  相似文献   

12.
The initial nucleation stages during deposition of SiO2 by remote plasma enhanced chemical vapour deposition (PECVD) have been monitored by XPS inelastic peak shape analysis. Experiments have been carried out on two substrates, a flat ZrO2 thin film and a silicon wafer with a native silicon oxide layer on its surface. For the two substrates it is found that PECVD SiO2 grows in the form of islands. When the SiO2 particles reach heights close to 10 nm they coalesce and cover completely the substrate surface. The particle formation mechanism has been confirmed by TEM observation of the particles grown on silicon substrates. The kinetic Monte Carlo simulation of the nucleation and growth of the SiO2 particles has shown that formation of islands is favoured under PECVD conditions because the plasma species may reach the substrate surface according to off-perpendicular directions. The average energy of these species is the main parameter used to describe their angular distribution function, while the reactivity of the surface is another key parameter used in the simulations.  相似文献   

13.
Wetting characteristics of micro-nanorough substrates of aluminum and smooth silicon substrates have been studied and compared by depositing hydrocarbon and fluorinated-hydrocarbon coatings via plasma enhanced chemical vapor deposition (PECVD) technique using a mixture of Ar, CH4 and C2F6 gases. The water contact angles on the hydrocarbon and fluorinated-hydrocarbon coatings deposited on silicon substrates were found to be 72° and 105°, respectively. However, the micro-nanorough aluminum substrates demonstrated superhydrophobic properties upon coatings with fluorinated-hydrocarbon providing a water contact angle of ∼165° and contact angle hysteresis below 2° with water drops rolling off from those surfaces while the same substrates showed contact angle of 135° with water drops sticking on those surfaces. The superhydrophobic properties is due to the high fluorine content in the fluorinated-hydrocarbon coatings of ∼36 at.%, as investigated by X-ray photoelectron spectroscopy (XPS), by lowering the surface energy of the micro-nanorough aluminum substrates.  相似文献   

14.
The coatings of hydroxyapatite, which is widely used for orthopaedic and dental prothesis, were deposited by using the dip-coating method. The layers of hydroxyapatite were grown on commercial Ti substrates. In order to improve the adhesion of hydroxyapatite, the substrate was a priori covered with titania or calcium titanate by using the sol-gel technique. For comparison, commercial samples of hydroxyapatite coating (manufactured by means of plasma-spray apparatus) were analysed. The chemical composition and the structure of the coatings (TiO2, CaTiO3 and hydroxyapatite) were studied by using X-ray photoelectron spectroscopy (XPS), scanning Auger microscopy (SAM), X-ray diffraction (XRD) and secondary electron microscopy (SEM) techniques. The data of quantitative XPS analysis and the surface images (SAM and SEM) displayed the superior quality (cleanness, homogeneity, etc.) of hydroxyapatite deposited by sol-gel in comparison with commercial samples investigated.  相似文献   

15.
电学参数对胶体中工业纯钛微弧氧化膜特性的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
陈根余  吴汉华  李乐  常鸿  唐元广 《物理学报》2010,59(3):1958-1963
利用自制多功能微弧氧化(MAO)电源对处在胶体中的工业纯钛表面进行了MAO处理,比较系统地研究了电压脉冲的峰值(U)和占空比(d)对膜层的生长特性、微观结构、相结构和处理后试样耐腐蚀性能的影响.结果表明,随着U的增加或d的加大,膜厚几乎呈线性增加,膜表面微孔尺寸和粗糙度逐渐增大,微孔密度逐渐减小.膜层主要由致密层组成,除U=450V,d=10%时制备试样的膜层中含有少量锐钛矿相TiO2外,其他试样的膜层全由金红石相TiO2组成;在30%硫酸溶液中的耐腐蚀测试表明,MAO处理后试样的耐腐蚀性能与U和d密切相关,随着U的增加或d的加大,试样的耐腐蚀能力逐渐增强.  相似文献   

16.
An understanding of the exact structural makeup of dielectric interface is crucial for development of novel gate materials. In this paper a study of the HfO2/Si interface created by the low-temperature deposition ultrathin stoichiometric HfO2 on Si substrates by reactive sputtering is presented. Analysis, quantification and calculation of layer thickness of an HfO2/Hf-Si-Ox/SiO2 gate stack dielectrics have been performed, using X-ray photoelectron spectroscopy (XPS) depth profile method, angle resolved XPS and interface modeling by XPS data processing software. The results obtained were found to be in good agreement with the high frequency capacitance-voltage (C-V) measurements. The results suggest a development of a complex three layer dielectric stack, including hafnium dioxide layer, a narrow interface of hafnium silicate and broad region of oxygen diffusion into silicon wafer. The diffusion of oxygen was found particularly detrimental to the electrical properties of the stack, as this oxygen concentration gradient leads to the formation of suboxides of silicon with a lower permittivity, κ.  相似文献   

17.
The physical-mechanical of properties of biocompatible calcium phosphate coatings deposited onto titanium and silicon substrates from erosion materials, which are generated by irradiating hydroxyapatite (synthetic and natural) targets by means of the high-power pulsed ion beam of a Temp-4 accelerator, are investigated. A calculation technique for predicting the rate and energy efficiency of deposition using pulsed ion beams is proposed. Their characteristics are analyzed as applied to the formation of calcium phosphate coatings.  相似文献   

18.
This work presents a study on an alternative coating method based on biomimetic techniques which are designed to form a crystalline hydroxyapatite layer very similar to the process corresponding to the formation of natural bone. The HA formation on the surface of titanium alloy pretreated with NaOH solution is investigated. Two types of solutions such as supersaturated calcification solution (SCS) and modified SCS (M-SCS) were used to investigate bone-like apatite formation on alkali-treated titanium. The hydroxyapatite deposits are investigated by means of scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). The data suggest that the method utilized in this work can be successfully applied to obtain deposition of uniform coatings of crystalline hydroxyapatite on titanium substrates.  相似文献   

19.
Hydroxyapatite (HA) thin-film coatings grown biomimetically using simulated body fluid (SBF) are desirable for a range of applications such as improved fixation of fine- and complex-shaped orthopedic and dental implants, tissue engineering scaffolds and localized and sustained drug delivery. There is a dearth of knowledge on two key aspects of SBF-grown HA coatings: (i) the growth kinetics over short deposition periods, hours rather than weeks; and (ii) possible difference between the coatings deposited with and without periodic SBF replenishment. A study centred on these aspects is reported. X-ray photoelectron spectroscopy (XPS) has been used to study the growth kinetics of SBF-grown HA coatings for deposition periods ranging from 0.5 h to 21 days. The coatings were deposited with and without periodic replenishment of SBF. The XPS studies revealed that: (i) a continuous, stable HA coating fully covered the titanium substrate after a growth period of 13 h without SBF replenishment; (ii) thicker HA coatings about 1 μm in thickness resulted after a growth period of 21 days, both with and without SBF replenishment; and (iii) the Ca/P ratio at the surface of the HA coating was significantly lower than that in its bulk. No significant difference between HA grown with and without periodic replenishment of SBF was found. The coatings were determined to be carbonated, a characteristic desirable for improved implant fixation. The atomic force and scanning electron microscopies results suggested that heterogeneous nucleation and growth are the primary deposition mode for these coatings. Primary osteoblast cell studies demonstrated the biocompatibility of these coatings, i.e., osteoblast colony coverage of approximately 80%, similar to the control substrate (tissue culture polystyrene).  相似文献   

20.
A facile, inexpensive, and general approach is explored for the fabrication of transparent silica/organic silicon hybrid sol, which could form transparent hydrophobic coatings on different substrates conveniently. The sol was prepared by using hexamethyldisilazane (HMDS) as a surface-modifying agent and the source of base catalyst required for the hydrolysis of tetraethoxysilane (TEOS). The resulting silica-based coatings on glass slide have shown an optical transmission over the visible range up to 89% (in reference to 100% transmission defined by a plain glass substrate) and high thermal stability. The water contact angle of the film reached 152. Hydrophobic coatings with excellent optical transmittance were also successfully formed on writing paper and aluminum foils. The transparent hydrophobic silica-based hybrid sol will have potential applications in creating outdoor building glass, protecting paper files from moisture and preventing metals from corrosion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号