首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, the effects of ultrasound treatment on the texture, physicochemical properties and protein structure of composite gels prepared by salted egg white (SEW) and cooked soybean protein isolate (CSPI) at different ratios were investigated. With the increased SEW addition, the ζ-potential absolute values, soluble protein content, surface hydrophobicity and swelling ratio of composite gels showed overall declining trends (P < 0.05), while the free sulfhydryl (SH) contents and hardness of exhibited overall increasing trends (P < 0.05). Microstructural results revealed that composite gels exhibited denser structure with the increased SEW addition. After ultrasound treatment, the particle size of composite protein solutions significantly decreased (P < 0.05), and the free SH contents of ultrasound-treated composite gels were lower than that of untreated composite gels. Moreover, ultrasound treatment enhanced the hardness of composite gels, and promoted the conversion of free water into non-flowable water. However, when ultrasonic power exceeded 150 W, the hardness of composite gels could not be further enhanced. FTIR results indicated that ultrasound treatment facilitated the composite protein aggregates to form a more stable gel structure. The improvement of ultrasound treatment on the properties of composite gels was mainly by promoting the dissociation of protein aggregates, and the dissociated protein particles further interacted to form denser aggregates through disulfide bond, thus facilitating the crosslinking and reaggregation of protein aggregates to form denser gel structure. Overall, ultrasound treatment is an effective approach to improve the properties of SEW-CSPI composite gels, which can improve the potential utilization of SEW and SPI in food processing.  相似文献   

2.
The effect of oat β-glucan (OG) combined with ultrasound treatment on the gelation properties of silver carp surimi with different salt contents was investigated. The results demonstrated that the gelation properties of surimi gels at high salt concentration were superior than those at low salt level. The addition of OG or ultrasound treatment could significantly enhance the texture properties, gel strength and water holding capacity (WHC) of gel samples, regardless of salt contents. The ultrasound treatment improved the whiteness of surimi gels, whereas the OG addition slightly declined the whiteness. Both OG addition and ultrasound treatment markedly reduced the total sulfhydryl content (total SH) and strengthened the hydrophobic interactions, forming the more uniform and denser gel network structures, hence more water was captured in network structures and became immobilized. Moreover, the combined treatment of OG and ultrasound showed synergic action on the gelation properties of surimi, and the gel strength and WHC of low-salt surimi gel treated by the combination of OG and ultrasound were even superior than that of high-salt gel without OG by traditional heating.  相似文献   

3.
This study was conducted to evaluate the effects of extra virgin olive (EVO) oil incorporation on the physicochemical properties and microstructure of surimi gels subjected to ultrasound-assisted water-bath heating. As the oil content was increased from 0 to 5 g/100 g, the breaking force and gel strength of the surimi gels significantly decreased, while the whiteness level exhibited the opposite tendency irrespective of the heating method. Compared with the traditional water-bath heating method, the ultrasonic heating promoted the unfolding of the α-helix structure and intensified the formation of β-sheet content and non-covalent bonds (ionic bonds, hydrogen bonds, and disulfide bonds), especially disulfide bonds, which contributed to the further crosslinking of the proteins and to gelation, thereby improving the gels’ strength. In addition, smaller cavities and compact microstructures were observed in the low-oil (≤3 g/100 g) surimi gels under ultrasonic treatment, which effectively prevented water migration in the gel network and resulted in a high water holding capacity and uniform water distribution. However, the ultrasonic treatment barely remedied the poor microstructures of the high-oil (>3 g/100 g) surimi gels owing to oil coalescence, which weakened the protein–protein interaction. In conclusion, ultrasonic treatment combined with water-bath heating significantly improved the gelation properties of the low-oil surimi gels, although it did not remarkably improve those of the high-oil gels. The choice of a suitable oil concentration could be of great importance for the production and functioning of surimi products via ultrasound-assisted treatments.  相似文献   

4.
In this study, soybean protein isolate (SPI) and pectin emulsion gels were prepared by thermal induction, and the effects of high intensity ultrasound (HIU) at various powers (0, 150, 300, 450 and 600 W) on the structure, gel properties and stability of emulsion gels were investigated. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) showed that the interaction between SPI and pectin was enhanced and the crystallinity of the emulsion gels was changed due to the HIU treatment. Confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) observations revealed that the particle size of the emulsion gels was decreased significantly by HIU treatment. The emulsion gel structure became more uniform and denser, which was conducive to storage stability. In addition, according to the low field nuclear magnetic resonance (LF-NMR) analysis, HIU treatment had no obvious impact on the content of bound water as the power increased to 450 W, while the content of free water decreased gradually and became immobilized water, which indicated that the water holding capacity of the emulsion gels was enhanced. Compared with untreated emulsion gel, differential scanning calorimetry (DSC) analysis showed that the denaturation temperature reached 131.9 ℃ from 128.2 ℃ when treated at 450 W. The chemical stability and bioaccessibility of β-carotene in the emulsion gels were improved significantly after HIU treatment during simulated in vitro digestion.  相似文献   

5.
The present work investigated the effects of water bath heating coupled with different ultrasound treatments on the gel properties, protein conformation, microstructures and chemical interactions of silver carp surimi at low/high salt levels. Results showed that the gel strength, hardness, springiness and water holding capacity (WHC) of surimi gels at low salt concentration were inferior to those at high salt content, regardless of the treatments. Compared with the traditional water bath heating, ultrasonic-assisted treatments significantly improved the gelation properties of surimi at the same salt level. In fact, ultrasound treatment also facilitated the unfolding of α-helix structure of the protein, with the resulting exposure of internal groups further enhancing hydrophobic interactions and hydrogen bonds between protein molecules, thereby leading to the formation of denser microstructures with smaller holes. Furthermore, the most noteworthy ultrasonic treatment group was ultrasound-assisted preheating (U + W) group, whose gelation performance under low salt condition, was comparable with that of the traditional two-stage heating (W + W) group with high salt content. Overall, ultrasound-assisted water bath preheating proved to be a feasible approach to improve the gel properties and microstructures of low-salt surimi gels.  相似文献   

6.
This study aimed to investigate influence of ultrasonic treatment on physicochemical and antioxidant properties of mung bean protein hydrolysate (MPH). Physicochemical properties of MPH were evaluated by Tricine-SDS-PAGE, particle size distribution, fourier transform infrared spectroscopy (FTIR) and fluorescence spectroscopy, among others. Radicals scavenging activities of ABTS, hydroxyl, superoxide anion, Fe2+ chelating ability and reducing power characterized antioxidant activities of MPH. MPH contained four bands of 25.6, 12.8, 10.6 and 4.9 kDa, in which 4.9 kDa was the most abundant. Ultrasonic treatment increased the contents of aromatic and hydrophobic amino acids in MPH. Ultrasonic treatment decreased the content of α-helix of MPH and increased β-sheet and β-turn compared to MPH. MPH-546 W (ultrasonic treatment 546 W, 20 min) had the lowest average particle size (290.13 nm), zeta potential (-36.37 mV) and surface hydrophobicity (367.95 A.U.). Antioxidant activities of ultrasonicated-MPH increased with the ultrasonic power, achieving the lowest IC50 (mg/mL) of 0.1087 (ABTS), 1.796 (hydroxyl), 1.003 (superoxide anion) and 0.185 (Fe2+ chelating ability) in 546 W power. These results indicated ultrasonic treatment would be a promising method to improve the antioxidant properties of MPH, which would broaden the application scope of MPH as bioactive components in the food industry.  相似文献   

7.
The effects of high intensity ultrasound (HIU, 105–110 W/cm2 for 5 or 40 min) pre-treatment of soy protein isolate (SPI) on the physicochemical properties of ensuing transglutaminase-catalyzed soy protein isolate cold set gel (TSCG) were investigated in this study. The gel strength of TSCG increased remarkably from 34.5 to 207.1 g for TSCG produced from SPI with 40 min HIU pre-treatment. Moreover, gel yield and water holding capacity also increased after HIU pre-treatments. Scanning electron microscopy showed that HIU of SPI resulted in a more uniform and denser microstructure of TSCG. The content of free sulfhydryl (SH) groups was higher in HIU TSCG than non-HIU TSG, even though greater decrease of the SH groups present in HIU treated SPI was observed when the TSCG was formed, suggesting the involvement of disulfide bonds in gel formation. Protein solubility of TSCG in both denaturing and non-denaturing solvents was higher after HIU pretreatment, and changes in hydrophobic amino acid residues as well as in polypeptide backbone conformation and secondary structure of TSCG were demonstrated by Raman spectroscopy. These results suggest that increased inter-molecular ε-(γ-glutamyl) lysine isopeptide bonds, disulfide bonds and hydrophobic interactions might have contributed to the HIU TSCG gel network. In conclusion, HIU changed physicochemical and structural properties of SPI, producing better substrates for TGase. The resulting TSCG network structure was formed with greater involvement of covalent and non-covalent interactions between SPI molecules and aggregates than in the TSCG from non-HIU SPI.  相似文献   

8.
In this work, emulsion-filled gels were prepared from natural and pH-shifting combined with ultrasound β-conglycinin (7S) as emulsifiers. The emulsifier modification and emulsion concentrations (5, 10, 15, 20 wt%) were evaluated on the structural and β-carotene release properties of the gels. Compared to the 7S hydrogel, the emulsion-filled gels exhibited better water-holding and textural properties. The 7S modification and the increase in emulsion concentration resulted in altered water distribution and improved microstructure and rheological properties of the emulsion-filled gels. The dense and homogeneous gel network was formed at an emulsion content of 15 wt%. The gels were regulated by different release kinetics in a simulated gastrointestinal environment. M−15 showed the highest bioaccessibility and chemical stability (72.25% and 89.87%) with good slow-release properties of β-carotene. These results will guide the development of encapsulated delivery systems for gel food products.  相似文献   

9.
High intensity ultrasonic (HUS, 20 k Hz, 400 W) pre-treatments of soybean protein isolate (SPI) improved the water holding capacity (WHC), gel strength and gel firmness (final elastic moduli) of glucono-δ-lactone induced SPI gels (GISG). Sonication time (0, 5, 20, and 40 min) had a significant effect on the above three properties. 20 min HUS-GISG had the highest WHC (95.53 ± 0.25%), gel strength (60.90 ± 2.87 g) and gel firmness (96340 Pa), compared with other samples. Moreover, SH groups and non-covalent interactions of GISG also changed after HUS pre-treatments. The HUS GISG had denser and more uniform microstructures than the untreated GISG. Rheological investments showed that the cooling step (reduce the temperature from 95 to 25 °C at a speed of 2 °C/min) was more important for the HUS GISG network formation while the heat preservation step (keep temperature at 95 for 20 min) was more important for the untreated GISG. HUS reduced the particle size of SPI and Pearson correlation test showed that the particle size of SPI dispersions was negatively correlated with WHC, gel strength and gel firmness.  相似文献   

10.
In recent years, more and more attention had been paid to the combination of proteins and flavonoids, and several flavonoids had been reported to improve the physicochemical and emulsifying properties of proteins. This study investigated the effects of ultrasonic treatment (450 W for 10 min, 20 min, and 30 min) on the physicochemical properties, antioxidant activity, and emulsifying properties of soy protein isolate (SPI) -hawthorn flavonoids (HF) non-covalent complexes. The results showed that the addition of HF to SPI and 20 min of ultrasound could reduce α-helix and random coil, increase β-sheet and β-turn, and enhance fluorescence quenching. In addition, it decreased the particle size, zeta potential, surface hydrophobicity, and turbidity to 88.43 or 95.27 nm, −28.80 mV, 1250.42, and 0.23, respectively. The protein solubility, free sulfhydryl group, antioxidant activity, emulsifying activity index, and emulsifying stability index all increased to 73.93%, 15.07 μmol/g, 71.00 or 41.91%, 9.81 m2/g, and 67.71%, respectively. Moreover, high-density small and low-flocculation droplets were formed. Therefore, the combined ultrasound treatment and addition of HF to SPI is a more effective method for protein modification compared to ultrasound treatment alone. It provides a theoretical basis for protein processing and application in the future.  相似文献   

11.
In this study, emulsion gels were prepared by sonicated grass pea protein isolates (GPPI) at different ultrasonic amplitudes (25, 50 and 75 %) and times (5, 10 and 20 min). Formation of emulsion gels was induced by transglutaminase. Enzymatic gelation of emulsions stabilized by sonicated GPPI occurred in two stages. A relatively fast stage led to the formation of a weak gel which was followed by a slow stage that strongly reinforced the gel structure. Emulsion gels fabricated by sonicated GPPIs showed a homogeneous and uniform droplet distribution with higher elastic modulus compared to the native protein. A stiffer emulsion gel with a higher G' was formed after the protein was treated at 75 % amplitude for 10 min. After sonication of GPPI, the water holding capacity (WHC) of emulsion gels increased in accordance with the mechanical properties. Higher intermolecular cross-linking within the gel network increased the thermal stability of emulsion gels fabricated by sonicated GPPI. Although sonicated-GPPI emulsion gels clearly displayed homogenous microstructure in comparison to that made with native GPPI, the microstructures of these gels were nearly identical for all sonication amplitudes and times.  相似文献   

12.
Effect of ultrasonic power on the structure and functional properties of water-soluble protein extracted from defatted Moringa oleifera seed were explored. The results showed that ultrasonic treatment could reduce β-sheet and β-turn content of water-soluble protein from Moringa oleifera seed (MOWP) and increase the content of random coil and α-helix. Changes in intrinsic fluorescence spectra, surface hydrophobicity (H0) and thermal behaviors indicated that ultrasonic had significant effect on the tertiary structure of MOWP. The results of SEM and SDS-PAGE showed that the MOWP was aggregated but not significantly degraded by ultrasound. The solubility, foaming properties and emulsifying properties of MOWP increased firstly and then decreased with the increase of ultrasonic power. Ultrasonic treatment altered the functional properties of MOWP, which might be attributed to the exposure of hydrophilic group and the change of and secondary and tertiary structure.  相似文献   

13.
In this study, the influence of ultrasound-assisted resting at different power on the rheological properties, water distribution and structural characteristics of dough with 50 % surimi as well as the texture, cooking and microstructure characteristics of the surimi-wheat noodles were investigated. Compared with the fermentation control (FC) noodles, the microstructure, cooking and texture characteristics of noodles (≤24.00 W/L) were significantly (p < 0.05) improved after ultrasonic treating. As the increasing of ultrasonic power, compared to FC, the creep strain, recovery strain, semi-bound water, and free sulfhydryl (SH) contents of surimi-wheat dough decreased at first and then increased significantly (p < 0.05). The α-helix and β-turn content of dough increased at first and then decreased after ultrasonic treatment, while the β-sheet was reversed. The surimi-wheat dough network structure was improved by ultrasonic treatment, with the densest and continuous pore size in 21.33 W/L, but the dough structure was broken and loose (>21.33 W/L), which consisted of the hardness, elasticity, chewiness, resistant and cooked quality of surimi-wheat noodles. This work elucidated the effect of ultrasonic power on the performance of surimi-wheat dough, and the optimal ultrasound power was obtained, thereby improving the nutritional properties and the quality of surimi-wheat noodles.  相似文献   

14.
In this study, the three-dimensional network system formed by rice bran wax (RBW) was used as the internal structure, and the external structure formed by soybean protein isolate (SPI) and phosphatidylserine (PS) was added on the basis of the internal structure to prepare walnut oil oleogel (SPI-PS-WOG). Ultrasonic treatment was applied to the mixed solution to make SPI-PS-WOG, on the basis, the effects of ultrasonic treatment on SPI-PS-WOG were investigated. The results showed that both β and β’ crystalline forms were present in all SPI-PS-WOG samples. When the ultrasonic power was 450 W, the first weight loss peak in the thermogravimetric (TGA) curve appeared at 326 °C, which was shifted to the right compared to the peak that occurred when the ultrasonic power was 0 W, indicating that the thermal stability of the SPI-PS-WOG was improved by the ultrasonic treatment. Moreover, when the ultrasonic power was 450 W, the oil holding capacity (OHC) reached 95.3 %, which was the best compared with other groups. Both confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) showed that the ultrasonic treatment of appropriate power succeeded in making the SPI-PS-WOG samples more evenly dispersed in the internal structure and denser in the external structure. In terms of oxidative stability, it was found that the peroxide value of SPI-PS-WOG remained at 9.8 mmol/kg oil for 50 days under 450 W ultrasonic power treatment, which was significantly improved compared with liquid walnut oil (WO). These results provide a new idea for the preparation of oleogels, and also lay a theoretical foundation for the application of ultrasonic treatment in oleogels.  相似文献   

15.
Ultrasonic wave properties in the particle compounded agarose gels   总被引:1,自引:0,他引:1  
Matsukawa M  Akimoto T  Ueba S  Otani T 《Ultrasonics》2002,40(1-8):323-327
Ultrasonic wave properties (attenuation and velocity) in the particle compounded agarose gels have been experimentally studied in the range from 1 to 30 MHz. The particles used were talc, glass beads and graphite. The effects of size and volume concentration of particles were clearly observed as changes of ultrasonic wave properties. Applying the Urick's theory for viscous liquid suspensions, the specific curves of velocity in the gels were observed as a function of a beta, where a is the radius of the particles and beta is described by angular frequency omega, density rho and fluid viscosity eta. This indicates that the particle behavior in the gels seems to be similar with that in the viscous fluid. The estimated eta in the gels was higher than that of the free water, showing the high viscosity in the gels.  相似文献   

16.
《Ultrasonics sonochemistry》2014,21(5):1649-1657
This study reports on the functional properties of 7% flaxseed oil/milk emulsion obtained by sonication (OM) using 20 kHz ultrasound (US) at 176 W for 1–8 min in two different delivery formulae, viz., ready-to-drink (RTD) and lactic acid gel. The RTD emulsions showed no change in viscosity after sonication for up to 8 min followed by storage up to a minimum of 9 days at 4 ± 2 °C. Similarly, the oxidative stability of the RTD emulsion was studied by measuring the conjugated diene hydroperoxides (CD). The CD was unaffected after 8 min of ultrasonic processing. The safety aspect of US processing was evaluated by measuring the formation of CD at different power levels. The functional properties of OM gels were evaluated by small and large scale deformation studies. The sonication process improved the gelation characteristics, viz., decreased gelation time, increased elastic nature, decreased syneresis and increased gel strength. The presence of finer sono-emulsified oil globules, stabilized by partially denatured whey proteins, contributed to the improvements in the gel structure in comparison to sonicated and unsonicated pasteurized homogenized skim milk (PHSM) gels. A sono-emulsification process of 5 min followed by gelation for about 11 min can produce gels of highest textural attibutes.  相似文献   

17.
Lanthanum aluminate ceramic powders could be prepared by a combined gel precipitation process from metal chlorides using ammonia. A slight modification in the conventional gel precipitation technique was carried out by introducing a step of ultrasonication followed by centrifugal washing of the gel. The dried gels produced pure phase lanthanum aluminate powders on calcination at 1100 °C for the combined gel-precipitated powders, and at 600 °C for the washed gel. The phase evolution was studied and it was found that the delay in obtaining monophasic LaAlO3 in the combined gel-precipitated powder owed to the crystallization of an impure phase LaOCl. This phase was not detected in the washed gel (WG) powders. TEM micrographs showed a uniform morphology for the calcined WG powders, which were in contrast to the irregular particles in the gel-precipitated (GP) powders. The uniform morphology was assigned to the ultrasonic effects during washing of the gel.  相似文献   

18.
Surimi from silver carp with different salt contents (0–5%) was obtained treated by high intensity ultrasound (HIU, 100 kHz 91 W·cm−2). The gelation properties of samples were evaluated by puncture properties, microstructures, water-holding capacity, dynamic rheological properties and intermolecular interactions. As the salt content increased from 0 to 5%, gel properties of surimi without HIU significantly improved. For samples with low-salt (0–2% NaCl) content, HIU induced obvious enhancement in breaking force and deformation. HIU promoted the protein aggregation linked by SS bonds, hydrophobic interactions and non-disulfide covalent bonds in surimi gels with low-salt content. Moreover, microstructures of HIU surimi gels with low-salt content were more compact than those of the corresponding control samples. HIU also improved the gelation properties of surimi with 3% NaCl to an extent. However, for high-salt (4–5% NaCl) samples, HIU decreased the breaking force and deformation of surimi gels due to the degradation of proteins suggested by increased TCA-soluble peptides. In conclusion, HIU effectively improved the gelation properties of surimi with low-salt content (0–2% NaCl), but was harmful for high-salt (4–5% NaCl) surimi. This might provide the theoretical basis for the production of low-salt surimi gels.  相似文献   

19.
Effects of the incorporation of ultrasound with varied intensities (0–800 W) into the thermal-induced gelation process on the gelling properties of myofibrillar protein (MP) were explored. In comparison with single heating, ultrasound-assisted heating (<600 W) led to significant increases in gel strength (up to 17.9%) and water holding capacity (up to 32.7%). Moreover, moderate ultrasound treatment was conducive to the fabrication of compact and homogenous gel networks with small pores, which could effectively impair the fluidity of water and allow redundant water to be entrapped within the gel network. Electrophoresis revealed that the incorporation of ultrasound into the gelation process facilitated more proteins to get involved in the development of gel network. With the intensified ultrasound power, α-helix in the gels lowered pronouncedly with a simultaneous increment of β-sheet, β-turn, and random coil. Furthermore, hydrophobic interactions and disulfide bonds were reinforced by the ultrasound treatment, which was in support of the construction of preeminent MP gels.  相似文献   

20.
Physicochemical properties and microstructure of gluten protein, and the structural characteristics of steamed bread with 30 % potato pulp (SBPP) were investigated by ultrasonic treatments. Results showed that 400 W ultrasonic treatment significantly (P < 0.05) increased the combination of water and substrate in the dough with 30 % potato pulp (DPP). The contents of wet gluten, free sulfhydryl (SH), and disulfide bond (SS) were influenced by ultrasonic treatment. Moreover, UV-visible and fluorescence spectroscopy demonstrated that the conformation of gluten protein was changed by ultrasonic treatment (400 W). Fourier transform infrared (FT-IR) illustrated that the β-sheet content was significantly (P < 0.05) increased (42 %) after 400 W ultrasonic treatment, and the surface hydrophobicity of gluten protein in SBPP increased from 1225.37 (0 W ultrasonic treatment) to 4588.74 (400 W ultrasonic treatment). Ultrasonic treatment facilitated the generation of a continuous gluten network and stabilized crumb structure, further increased the specific volume and springiness of SBPP to 18.9 % and 6.9 %, respectively. Those findings suggested that ultrasonic treatment would be an efficient method to modify gluten protein and improve the quality of SBPP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号