首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rapid detection of biological contaminants such as worms in fresh-cut vegetables is necessary to improve the efficiency of visual inspections carried out by workers. Multispectral imaging algorithms were developed using visible-near-infrared (VNIR) and near-infrared (NIR) hyperspectral imaging (HSI) techniques to detect worms in fresh-cut lettuce. The optimal wavebands that can detect worms in fresh-cut lettuce were investigated for each type of HSI using one-way ANOVA. Worm-detection imaging algorithms for VNIR and NIR imaging exhibited prediction accuracies of 97.00% (RI547/945) and 100.0% (RI1064/1176, SI1064-1176, RSI-I(1064-1173)/1064, and RSI-II(1064-1176)/(1064+1176)), respectively. The two HSI techniques revealed that spectral images with a pixel size of 1 × 1 mm or 2 × 2 mm had the best classification accuracy for worms. The results demonstrate that hyperspectral reflectance imaging techniques have the potential to detect worms in fresh-cut lettuce. Future research relating to this work will focus on a real-time sorting system for lettuce that can simultaneously detect various defects such as browning, worms, and slugs.  相似文献   

2.
Mass transfer coefficient is an important parameter in the process of mass transfer. It can reflect the degree of enhancement of mass transfer process in liquid–solid reaction and in non-reactive systems like dissolution and leaching, and further verify the issues by experiments in the reaction process. In the present paper, a new computational model quantitatively solving ultrasonic enhancement on mass transfer coefficient in liquid–solid reaction is established, and the mass transfer coefficient on silicon surface with a transducer at frequencies of 40 kHz, 60 kHz, 80 kHz and 100 kHz has been numerically simulated. The simulation results indicate that mass transfer coefficient increases with the increasing of ultrasound power, and the maximum value of mass transfer coefficient is 1.467 × 10−4 m/s at 60 kHz and the minimum is 1.310 × 10−4 m/s at 80 kHz in the condition when ultrasound power is 50 W (the mass transfer coefficient is 2.384 × 10−5 m/s without ultrasound). The extrinsic factors such as temperature and transducer diameter and distance between reactor and ultrasound source also influence the mass transfer coefficient on silicon surface. Mass transfer coefficient increases with the increasing temperature, with the decreasing distance between silicon and central position, with the decreasing of transducer diameter, and with the decreasing of distance between reactor and ultrasound source at the same ultrasonic power and frequency. The simulation results indicate that the computational model can quantitatively solve the ultrasonic enhancement on mass transfer coefficient.  相似文献   

3.
In this study, the effects of ultrasound with different ultrasonic frequencies on the properties of sodium alginate (ALG) were investigated, which were characterized by the means of the multi-angle laser light scattering photometer analysis (GPC-MALLS), rheological analysis, circular dichroism (CD) spectrometer and scanning electron microscope (SEM). It showed that the molecular weight (Mw) and molecular number (Mn) of the untreated ALG was 1.927 × 105 g/mol and 4.852 × 104 g/mol, respectively. The Mw of the ultrasound treated ALG was gradually increased from 3.50 × 104 g/mol to 7.34 × 104 g/mol while the Mn of ALG was increased and then decreased with the increase of the ultrasonic frequency. The maximum value of Mn was 9.988 × 104 g/mol when the ALG was treated by ultrasound at 40 kHz. It indicated that ultrasound could induce ALG degradation and rearrangement. The number of the large molecules and small molecules of ALG was changed by ultrasound. The value of dn/dc suggested that the ultrasound could enhance the stability of ALG. Furthermore, it was found that ALG treated by ultrasound at 50 kHz tended to be closer to a Newtonian behavior, while the untreated and treated ALG solutions exhibited pseudoplastic behaviours. Moreover, CD spectra demonstrated that ultrasound could be used to improve the strength of the gel by changing the ratio of M/G, which showed that the minimum ratio of M/G of ALG treated at 135 kHz was 1.34. The gel-forming capacity of ALG was correlated with the content of G-blocks. It suggested that ALG treated by ultrasound at 135 kHz was stiffer in the process of forming gels. The morphology results indicated that ultrasound treatment of ALG at 135 kHz increased its hydrophobic interaction and interfacial activity. This study is important to explore the effect of ultrasound on ALG in improving the physical properties of ALG as food additives, enzyme and drug carriers.  相似文献   

4.
For microscopic interference setups like an arrangement for in-line holographic microscopy a partially coherent illumination with volumes of coherence in the micrometer scale is sufficient and helpful. For the sensitive measurement of the area of spatial coherence, we use a 125 × 125 nanohole array with aperture diameters of 530 nm and periodic distances of 4 μm. In contrast to Young's double pinhole, multiple beams interfere with each other and a peak intensity enhancement by more than a factor of 1000 can be reached. From the diameter of interference spots, which are located in the Talbot planes, we determine the diameter of the area of spatial coherence in the range of 5–50 μm. Limitations of this technique are given by the numerical aperture of the used imaging lens (100×/0.75) as well as the periodic distance of the apertures within the array.  相似文献   

5.
In this study, the synthesis of Ce0.8Sm0.2O1.9 (SDC) solid electrolyte by the ultrasound assisted co-precipitation method was accomplished to explore the effects of ultrasound power, ultrasound pulse ratio and probe type upon the ionic conductivity of SDC as well as the lattice parameter, the microstructure and the density. Fine powders of uniform crystallite sizes (average 11.70 ± 0.62 nm) were obtained, needing lower sintering temperature. The SDC powders were successfully sintered to a relative density of over 95% at 1200 °C (5 °C min?1) for 6 h. The micrograph of SDC pellets showed non-agglomerated and well-developed grains with average size of about 200 nm. X-ray diffraction analysis showed that the lattice parameter increased with increasing acoustic intensity and reached a maximum for the 14.94 W cm?2. Further, a linear relationship was detected between the lattice parameter and the ionic conductivity, inspiring a dopant like effect of US on the electrolyte properties. The highest ionic conductivity as σ800°C = 3.07 × 10?2 S cm?1 with an activation energy Ea = 0.871 kJ mol?1 was obtained with pulsed ultrasound for an acoustic intensity of 14.94 W cm?2, using 19 mm probe and 8:2 pulse ratio.  相似文献   

6.
A new asymmetric integral imaging (AII) system for real-time pickup and three-dimensional (3-D) display of far outdoor scenes based on dynamic-pixel-mapping (DPM) is proposed. DPM is a digital process to transform the elemental images captured with a lens array into the perspective-variant object images (POIs) whose structures are matched with those of display lenses, where the orders of pixels in each POI are reversely mapped, and then capture a set of virtual elemental images (EIs) at the specific depth planes from the back-propagated POIs. This DPM enables an asymmetrical use of pickup and display lens arrays, allowing the long-ranged pickup of far outdoor scenes and their resolution-enhanced 3-D reconstruction. Experiments with a pair of pickup and display lens arrays whose pitches and focal lengths are given by 7.5 mm, 30 mm and 1.2 mm, 8 mm, respectively, show that the effective pickup-range and resolution of the proposed system have been increased up to 6 m and 1600×1600 pixels, respectively, from 0.064 m and 480×480 pixels of the conventional systems employing the same pickup and display lens arrays. In addition, experiments with an implemented test bed confirms that the proposed system can provide real-time 3-D images in 25 frames per second.  相似文献   

7.
A transient photocurrent model is used to explain terahertz emission from gas plasma irradiated by a laser pulse and the second harmonic. By introducing the second harmonic, 400 nm, the corresponding terahertz emission is greatly enhanced. The exact dependence of terahertz emission on the intensity ratio of 400–800 nm is studied for the case with total intensity of 5.00 × 1014 W/cm2. Results show the emission reaches the maximum at about the case for energy distribution of Iω = 4.00 × 1014 W/cm2, I2ω = 1.00 × 1014 W/cm2.  相似文献   

8.
The present work demonstrates the hydrolysis of waste cooking oil (WCO) under solvent free condition using commercial available immobilized lipase (Novozyme 435) under the influence of ultrasound irradiation. The process parameters were optimized using a sequence of experimental protocol to evaluate the effects of temperature, molar ratios of substrates, enzyme loading, duty cycle and ultrasound intensity. It has been observed that ultrasound-assisted lipase-catalyzed hydrolysis of WCO would be a promising alternative for conventional methods. A maximum conversion of 75.19% was obtained at mild operating parameters: molar ratio of oil to water (buffer pH 7) 3:1, catalyst loading of 1.25% (w/w), lower ultrasound power 100 W (ultrasound intensity – 7356.68 W m−2), duty cycle 50% and temperature (50 °C) in a relatively short reaction time (2 h). The activation energy and thermodynamic study shows that the hydrolysis reaction is more feasible when ultrasound is combined with mechanical agitation as compared with the ultrasound alone and simple conventional stirring technique. Application of ultrasound considerably reduced the reaction time as compared to conventional reaction. The successive use of the catalyst for repetitive cycles under the optimum experimental conditions resulted in a loss of enzymatic activity and also minimized the product conversion.  相似文献   

9.
ObjectiveIn this study, we sought to demonstrate the blood suppression performance, image quality and morphological measurements for compressed sensing (CS) based simultaneous 3D black- and gray-blood imaging sequence (CS-siBLAG) in carotid vessel wall MR imaging.Materials and methodsSeven healthy volunteers and five patients were recruited. Healthy subjects underwent five CS-siBLAG scans with 1, 2, 3, 4 and 5-fold accelerations. Signal-to-tissue ratio (STR) and contrast-to-tissue ratio (CTR) were computed as the measures of flowing signal suppression performance and the image quality for black-blood imaging of the technique. Vessel lumen area (LA) and wall area (WA) were compared between fully sampled acquisition and each accelerated acquisition. Patients underwent three CS-siBLAG scans with 1, 3 and 5-fold accelerations as well as a 3D time of flight (3D TOF) scan. Two radiologists reviewed the under-sampled black- and gray-blood image quality.ResultsSTR and CTR values obtained with 2 to 5-fold accelerations were not significantly different from those with full acquisition. LA and WA measured at 2 ×, 3 ×, 4 × and 5 × were all highly correlated to the corresponding values at 1 ×. For patients imaging, two radiologists both found that the dual-contrast images at 3 × acceleration exhibited comparable image quality to that of the fully sampled acquisition, and that the images at 5 × exhibited slightly blurred vessel wall and outer vessel wall boundaries.ConclusionBy combining the CS under-sampling pattern and reconstruction, pseudo-centric phase encoding order and dual blood contrast sequences, this technique provides spatially registered black- and gray-blood images and excellent visualization for vessel wall imaging and gray-blood imaging in a short scan time.  相似文献   

10.
Using three-dimensional classical ensembles, we have investigated the enhancement of double ionization of perpendicularly aligned H2 molecules by a 800 nm laser pulse with intensity ranging from 1 × 1014 W/cm2 to 6 × 1014 W/cm2. The simulated results show that double ionization probability of H2 strongly depends on R and reaches a maximum at an intensity independent critical distance RC  5 a.u. Furthermore, the enhancement of double ionization is more pronounced in the cases of weaker or stronger fields. These results, a well indication of the influence of molecular structures and laser–molecule interactions on double ionization of diatomic molecules, are analyzed in detail and qualitatively explained based on the field-induced barrier suppression model and back analysis.  相似文献   

11.
The use of ultrasound to enhance the transport phenomena in food processes has been well recognised in recent times. The objective of this study was to evaluate the effect of sonication on hydration rate and pasting profile of navy beans. The hydration kinetics for control and ultrasound assisted soaking was mathematically described using mechanistic (Fickian diffusion) and empirical (Peleg’s equation, Weibull model and First Order equation) models. Ultrasound enhanced the rate of hydration which was evident from the plot of kinetic data and model parameters. The effective diffusivities for water transport without and with ultrasound application were estimated to be 1.36 × 10−10 m2/s and 2.19 × 10−10 m2/s respectively, considering Fickian diffusion. The Weibull model was concluded to best predict the hydration kinetics of navy beans in an ultrasonic field. Significant increase in peak viscosity of sonicated bean powder was observed compared to control.  相似文献   

12.
《Ultrasonics sonochemistry》2014,21(3):1050-1064
This paper reports studies in ultrasound-assisted heterogeneous solid catalyzed (CaO) synthesis of biodiesel from crude Jatropha curcas oil. The synthesis has been carried out in two stages, viz. esterification and trans-esterification. The esterification process is not influenced by ultrasound. The transesterification process, however, shows marked enhancement with ultrasound. A statistical experimental design has been used to optimize the process conditions for the synthesis. XRD analysis confirms formation of Ca(OMe)2, which is the active catalyst for transesterification reaction. The optimum values of parameters for the highest yield of transesterification have been determined as follows: alcohol to oil molar ratio  11, catalyst concentration  5.5 wt.%, and temperature  64 °C. The activation energy of the reaction is calculated as 133.5 kJ/mol. The heterogeneity of the system increases mass transfer constraints resulting in approx. 4× increase in activation energy as compared to homogeneous alkali catalyzed system. It is also revealed that intense micro-convection induced by ultrasound enhances the mass transfer characteristics of the system with ∼20% reduction in activation energy, as compared to mechanically agitated systems. Influence of catalyst concentration and alcohol to oil molar ratio on the transesterification yield is inter-linked through formation of methoxy ions and their diffusion to the oil–alcohol interface, which in turn is determined by the volume fractions of the two phases in the reaction mixture. As a result, the highest transesterification yield is obtained at the moderate values of catalyst concentration and alcohol to oil molar ratio.  相似文献   

13.
《Ultrasonics sonochemistry》2014,21(5):1866-1874
This study investigated the mechanical bioeffects exerted by acoustic droplet vaporization (ADV) under different experimental conditions using vessel phantoms with a 200-μm inner diameter but different stiffness for imitating the microvasculature in various tumors. High-speed microscopy, passive cavitation detection, and ultrasound attenuation measurement were conducted to determine the morphological characteristics of vascular damage and clarify the mechanisms by which the damage was initiated and developed. The results show that phantom erosion was initiated under successive ultrasound exposure (2 MHz, 3 cycles) at above 8-MPa peak negative pressures (PNPs) when ADV occurred with inertial cavitation (IC), producing lesions whose morphological characteristics were dependent on the amount of vaporized droplets. Slight injury occurred at droplet concentrations below (2.6 ± 0.2) × 106 droplets/mL, forming shallow and rugged surfaces on both sides of the vessel walls. Increasing the droplet concentration to up to (2.6 ± 0.2) × 107 droplets/mL gradually suppressed the damage on the distal wall, and turned the rugged surface on the proximal wall into tunnels rapidly elongating in the direction opposite to ultrasound propagation. Increasing the PNP did not increase the maximum tunnel depth after the ADV efficiency reached a plateau (about 71.6 ± 2.7% at 10 MPa). Increasing the pulse duration effectively increased the maximum tunnel depth to more than 10 times the diameter of the vessel even though there was no marked enhancement in IC dose. It can be inferred that substantial bubble generation in single ADV events may simultaneously distort the acoustic pressure distribution. The backward ultrasound reinforcement and forward ultrasound shielding relative to the direction of wave propagation augment the propensity of backward erosion. The results of the present work provide information that is valuable for the prevention or utilization of ADV-mediated mechanical bioeffects in clinical applications.  相似文献   

14.
Osmotic dehydration (OD) of carambola slices were carried out using glucose, sucrose, fructose and glycerol as osmotic agents with 70 °Bx solute concentration, 50 °C of temperature and for time of 180 min. Glycerol and sucrose were selected on the basis of their higher water loss, weight reduction and lowers solid gain. Further the optimization of OD of carambola slices (5 mm thick) were carried out under different process conditions of temperature (40–60 °C), concentration of sucrose and glycerol (50–70 °Bx), time (180 min) and fruit to solution ratio (1:10) against various responses viz. water loss, solid gain, texture, rehydration ratio and sensory score according to a composite design. The optimized value for temperature, concentration of sucrose and glycerol has been found to be 50 °C, 66 °Bx and 66 °Bx respectively. Under optimized conditions the effect of ultrasound for 10, 20, 30 min and centrifugal force (2800 rpm) for 15, 30, 45 and 60 min on OD of carambola slices were checked. The controlled samples showed 68.14% water loss and 13.05% solid gain in carambola slices. While, the sample having 30 min ultrasonic treatment showed 73.76% water loss and 9.79% solid gain; and the sample treated with centrifugal force for 60 min showed 75.65% water loss and 6.76% solid gain. The results showed that with increasing in treatment time the water loss, rehydration ratio were increased and solid gain, texture were decreased.  相似文献   

15.
The atomic structure and the saturation coverage of Cs on the Si(0 0 1)(2×1) surface at room temperature have been studied by coaxial impact collision ion scattering spectroscopy (CAICISS). For the atomic structure of saturated Cs/Si(0 0 1)(2×1) surface, it is found that Cs atoms occupy a single adsorption site at T3 on the Si(0 0 1) surface. The height of Cs atoms adsorbed at T3 site is 3.18±0.05 Å from the second layer of Si(0 0 1)(2×1) surface. The saturation coverage estimated from the measured CAICISS intensity ratio and the proposed atomic structure is found to be 0.46±0.06 ML.  相似文献   

16.
We synthesized oxygen and paclitaxel (PTX) loaded lipid microbubbles (OPLMBs) for ultrasound mediated combination therapy in hypoxic ovarian cancer cells. Our experiments successfully demonstrated that ultrasound induced OPLMBs destruction significantly enhanced the local oxygen release. We also demonstrated that OPLMBs in combination with ultrasound (300 kHz, 0.5 W/cm2, 15 s) yielded anti-proliferative activities of 52.8 ± 2.75% and cell apoptosis ratio of 35.25 ± 0.17% in hypoxic cells at 24 h after the treatment, superior to other treatment groups such as PTX only and PTX-loaded MBs (PLMBs) with or without ultrasound mediation. RT-PCR and Western blot tests further confirmed the reduced expression of HIF-1α and MDR-1/P-gp after ultrasound mediation of OPLMBs. Our experiment suggests that ultrasound mediation of oxygen and drug-loaded MBs may be a useful method to overcome chemoresistance in the hypoxic ovarian cancer cells.  相似文献   

17.
The appearance of intense terahertz sources such as quantum cascade laser and free electron laser opens up new opportunities for 2D imaging. Though microbolometer and pyroelectric arrays are promising recorders, they are of small size and cannot be used when wide-field imaging in the longwave region is required. We applied for terahertz imaging 3″ × 3″ and 6″ × 6″ Macken Instruments Inc. “thermal image plates”, a set of thermal sensitive phosphor screens operating in a room temperature environment. The Novosibirsk free electron laser was used as a source of radiation. We have found that the response of thermal image plate is linear until the relative quenching is less than 60% of the initial luminescence intensity. The response curve follows the Seitz–Mott law. The threshold sensitivity was found to be 100 mW/cm2 at 1.5 THz and 40 mW/cm2 at 2.3 THz. Interferograms, holograms, and terahertz beam spatial distributions recorded in the spectral range of 1.2–2.5 THz are given as examples.  相似文献   

18.
A novel flow injection method for detection of l-proline was proposed in the presence of CdTe quantum dots (QDs). This method is based on the enhanced anodic electrochemiluminescence (ECL) emission of CdTe QDs l-proline in aqueous system. CdTe QDs were modified with thioglycolic acid to obtain stable water-soluble QDs and intensive anodic ECL emission in Na2CO3–NaHCO3 buffer solution at an indium tin oxide (ITO) electrode, which was used for the sensitive detection of ECL enhancement using our homemade flow cell. Under the optimal conditions, the ECL intensity was correlated linearly with the concentration of l-proline over the range of 1.0×10?8?1.0×10?4 g mL?1 (r=0.9996) and the detection limit was 5.0×10?9 g mL?1. The relative standard deviation was 1.12% for 6.0×10?5 g mL?1 l-proline (n=11). The possible mechanism was discussed. This method put forward a new efficient ECL methodology for enhancement-related determination of l-proline successfully.  相似文献   

19.
Four different lipases were compared for ultrasound-mediated synthesis of the biodegradable copolymer poly-4-hydroxybutyrate-co-6-hydroxyhexanoate. The copolymerization was carried out in chloroform. Of the enzymes tested, Novozym 435 exhibited the highest copolymerization rate, in fact the reaction rate was observed to increase with about 26-fold from 30 to 50 °C (7.9 × 10?3 M s?1), sonic power intensity of 2.6 × 103 W m?2 and dissipated energy of 130.4 J ml?1. Copolymerization rates with the Candida antarctica lipase A, Candida rugosa lipase, and Lecitase Ultra? were lower at 2.4 × 10?4, 1.3 × 10?4 and 3.5 × 10?4 M s?1, respectively. The catalytic efficiency depended on the enzyme. The efficiency ranged from 4.15 × 10?3 s?1 M?1 for Novozym 435–1.48 × 10?3 s?1 M?1 for C. rugosa lipase. Depending on the enzyme and sonication intensity, the monomer conversion ranged from 8.2% to 48.5%. The sonication power, time and temperature were found to affect the rate of copolymerization. Increasing sonication power intensity from 1.9 × 103 to 4.5 × 103 W m?2 resulted in an increased in acoustic pressure (Pa) from 3.7 × 108 to 5.7 × 108 N m?2 almost 2.4–3.7 times greater than the acoustic pressure (1.5 × 108 N m?2) that is required to cause cavitation in water. A corresponding acoustic particle acceleration (a) of 9.6 × 103–1.5 × 104 m s?2 was calculated i.e. approximately 984–1500 times greater than under the action of gravity.  相似文献   

20.
Modulation transfer function (MTF) is the ability of an imaging system to faithfully image a given object. The MTF of an imaging system quantifies the ability of the system to resolve or transfer spatial frequencies. In this paper we will discuss the detail MTF measurements of a 1024 × 1024 pixel multi-band quantum well infrared photodetector and 320 × 256 pixel long-wavelength InAs/GaSb superlattice infrared focal plane arrays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号