首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 48 毫秒
1.
In BaWO4 crystals electrons and holes trapped at WO4 complexes are identified by electron paramagnetic resonance (EPR) after X-irradiation at T = 80 K. The thermal decay of the intrinsic hole centres at about 100 K is accompanied by a simultaneous decrease of electron traps (WO4)3- and glow maxima of thermoluminescence (TL) and of thermally stimulated conductivity (TSC). This connection is explained by a thermally activated hopping of the (WO4)3-2 hole centres followed by radiative recombination with electron traps (WO4)3-. A qualitative kinetic calculation based upon EPR data and the shift between TL and TSC glow peak confirms this model.  相似文献   

2.
This paper describes a detailed experimental study of the thermoluminescence (TL) properties of four binary lead-silicate glasses, with PbO concentrations ranging from 32% to 62% in mole percent. The TL glow peaks between room temperature and 300 °C were analyzed using a systematic thermal cleaning technique. The Tmax-Tstop and E-Tstop methods of analysis were used to identify the number of peaks under the glow curves, and to obtain the activation energy E for each TL trap. A computerized glow curve fitting analysis is used to fit the experimental data to four first-order peaks with maxima at temperatures of 54, 80, 110 and 210 °C, as measured with a heating rate of 2 °C/s. The kinetic parameters of the glow-peak at 210 °C were confirmed by using phosphorescence decay methods of analysis. The TL traps associated with the low-temperature TL peak at 54 °C are found to depend strongly on the PbO concentration of the samples, while the higher-temperature TL peaks show a behavior independent of the PbO concentration. The activation energy E and frequency factor s of the low-temperature TL trap associated with the peak at 54 °C are consistent with a trap involving a delocalized transition through the conduction band. However, the activation energies and frequency factors for the higher-temperature TL traps are consistent with traps involving localized transitions via an excited state below the conduction band. The data suggest that these higher-temperature TL traps are associated with the common silicate matrix in these binary silicate glasses.  相似文献   

3.
Borate based thermoluminescence dosimeters (TLD) show high sensitivity and good TL characteristics. One of the promising material amongst the dosimeters is Dy doped CaB4O7. Spectrally resolved thermoluminescence of Dy doped CaB4O7 shows three glow peaks at about 50 °C, 240 °C and 380 °C, the intensity of the 240 °C glow peak being the maximum. All TL experiments were conducted on a high sensitivity TL spectrometer at Sussex University with a heating rate of 50 °C min?1. Two main emissions associated with the Dy dopant are observed at ~480 and 580 nm. The samples were subjected to a series of treatments including excitation by X-rays and UV laser radiation. As part of the present research CaB4O7:Dy materials were subjected to two different heat treatments; quenching and slow cooling in order to investigate the changes in TL characteristics.  相似文献   

4.
Results are reported of a coordinated investigation of the dynamics of electronic excitations in LiB3O5 and Li2B4O7 crystals by low-temperature luminescence VUV spectroscopy performed with subnano-second resolution under synchrotron photoexcitation. Data on the photoluminescence (PL) decay kinetics, time-resolved PL and PL excitation spectra, and reflectance spectra obtained at 295 and 9.6 K are reported for the first time; the PL of the borates in the 3.5-eV region caused by radiative annihilation of self-trapped excitons (STE) has been established to have an intrinsic nature; the σ and π STE luminescence bands originating from singlet and triplet radiative transitions have been isolated; the shift of the STE σ band relative to the π band has been interpreted; the LBO recombination luminescence band has been isolated; and the creation and decay channels of relaxed and unrelaxed excitons in lithium borates are discussed.  相似文献   

5.
The area under the glow curve (no thermal quenching and same dose) is conserved only in TL-time plots and is not conserved (scales by a factor by which heating rate is increased) in TL-temperature plots. This increase in area under TL-temperature glow curves with increase in heating rate at a constant dose should not be interpreted as increase in sensitivity of the dosimeter and is the consequence of transformation of time to temperature scale (temperature scale obtained from time scale by multiplying with β, T=T0+βt). This is further supported by the fact that the light output or integrated counts seen by the PMT do not change (ignoring statistical fluctuations) with increase in heating rate at a constant dose. Further for a given heating rate, the glow peak height is similar in time and temperature plots and the glow peak height increases with increase in heating rate. However to conserve area in TL-temperature plots, the TL intensity should be divided by the respective heating rate, which will lead to the decrease of glow peak height in I/β-temperature plots and is the artifact of the normalization process. However for normalized glow curves (I/β-temperature), the glow peak height decreases with increase in heating rate, which is actually true for I/β or TL/β versus temperature plots. Hence it is recommended that in such cases where normalized glow curves (I/β versus temperature) are presented, the obtained peak height must be multiplied by β. By doing so, glow peak height increases with increase in heating rate. In addition to the above, studies are also carried out by considering thermal quenching effect and it is found that a logical way to measure thermal quenching quantitatively is to record the decrease of integrated counts (PMT current) with increase in heating rate at a constant dose, i.e. the integrated peak area (PMT current or TL-time or TL/β-temperature) must be plotted against the heating rate and the same should be used for interpretation of thermal quenching effect. Only this proves the fact whether the decrease of TL intensity (TL/β-temperature) is due to thermal quenching or not.  相似文献   

6.
Experiments have been performed on the thermoluminescence and the isothermal decay of luminescence of both urea and thiourea crystals excited by X-rays at low temperature. The analysis of the isothermal decay curves has been performed assuming that the light emission consists of a sum of exponential decays with different time constants τi. Taking into account the dependence of τi from temperature, the values of thermal activation energies of the trapping centres involved in the luminescence process are obtained. In addition, the analysis of the glow curve, that has been performed through three different methods, allowed to obtain the values of some parameters related to the thermoluminescence process, such as the thermal activation energy E, the frequency factor s and the ration A/B between the retrapping and recombination probabilities. These results agree well enough with those from the isothermal decay analysis. A comparison has been made between the results for urea and for thiorea. Some topics concerned with the nature of the defects responsible for the luminescence process in these substances are also investigated.  相似文献   

7.
A study of the luminescence characteristics of crystalline lithium triborate LiB3O5 (LBO) is reported. Investigation of the excitation and photoluminescence spectra of nominally pure, oriented LBO crystals within broad spectral (1.2–10.5 eV) and temperature (8–500 K) regions, complemented by optical spectroscopy at the long-wavelength fundamental-absorption edge, has revealed that the broad-band LBO luminescence in the 3.5–4.5-eV region is efficiently excited by photons having energies above 7.5 eV in recombination processes and under corpuscular or x-ray irradiation. The totality of the experimental data obtained permitted a conclusion that the LBO luminescence has an intrinsic nature and that it originates from radiative decay of relaxed electronic excitations. Fiz. Tverd. Tela (St. Petersburg) 41, 223–228 (February 1999)  相似文献   

8.
This work evaluates the dosimetric properties of crystals of CaSO4 doped with unusual elements, such as europium (Eu) and silver (Ag), including their nanoparticle forms, after the incorporation of glass or Teflon and compares them with well-known thermoluminescent dosimeters (TLD). X-ray diffraction analyses showed that samples of doped CaSO4 exhibit only a single phase corresponding to the crystal structure of anhydrite. Optical spectroscopy confirmed the presence of Eu3+ in the crystal matrix and a luminescent gain due the presence of silver nanoparticles. The composites showed thermoluminescent emission glow curves, with a single peak centered at approximately 200 °C for pellets with Teflon and at 230 °C for pellets with glass. The dosimeters based on calcium sulfate doped with europium and silver nanoparticles provided the most intense thermoluminescent (TL) emission of the composites studied. In comparison with commercial TLD, such as LiF:Mg,Ti and CaSO4:Dy, the CaSO4:Eu,Ag(NP)+glass produced in this work presented similar low detection limits and higher sensitivity. The new methods for the preparation of dosimeters and the incorporation of glass are shown to be viable because all of the samples presented a linear, reproducible and first order kinetic TL emission.  相似文献   

9.
The influence of dopant TiO2 and co-dopant MgO on the thermoluminescence (TL) properties of lithium potassium borate glass (LKB) is reported in this paper. The glow curve exhibits a prominent peak (Tm) at 230 °C. The TL intensity was enhanced by a factor of ~3 due to the incorporation of MgO, and this was attributed to the creation of extra electron traps mediated by radiative recombination energy transfer. We achieved good linearity of the TL yield with dose, low fading, excellent reproducibility and a promising effective atomic number (Zeff=8.89), all of which are highly suitable for dosimetry. The effect of heating rate, sunlight and dose rate on the TL are also examined. These attractive features demonstrate that our dosimeter is useful in medical radiation therapy.  相似文献   

10.
Li_2B_4O_7 (LBO):Cu,Ag,Mg phosphors have been prepared by the sintering technique. The roles of the Ag and Mg dopants in the phosphors have been studied using the methods of thermoluminescence (TL) glow curves and TL 3D spectra. The results indicated that proper concentrations of Ag and Mg can enhance the TL of LBO:Cu. It was also indicated that the intensity of TL peak at ~130℃ is reduced with the in- creasing Ag concentration, and enhanced with the increasing Mg concentration. From the TL 3D spectra, three emission bands (λ1 = 421 nm, λ2 = 380 nm, λ3 = 350 nm) were observed: the intensity of low energy emission band is reduced and that of the high energy is enhanced with the increasing dopant Ag; on the contrary, the intensity of low energy emission band is enhanced and that of the high energy one is reduced with the increasing dopant Mg.  相似文献   

11.
Optical bleaching of the thermoluminescence (TL) curve of K2YF5:Pr3+ has been observed after optically stimulated luminescence (OSL) readout of pre-irradiated crystals. The traps being responsible for the TL signal are not emptied completely by the optical stimulation. Furthermore, if the illumination time is increased a constant intensity level of the residual TL glow curve is eventually achieved. On the other hand, if the low temperature peak of the glow curve is thermally cleaned, no subsequent OSL is measured. This behavior has been successfully explained by assuming that part of the electrons in the trap being responsible for the low temperature glow peak of K2YF5:Pr3+ recombine with holes via localized transitions during optical stimulation. During TL all trapped electrons recombine via delocalized transitions. Simulations have been carried out in order to demonstrate the feasibility of the model.  相似文献   

12.
The thermoluminescence glow curves of Sr2MgSi2O7: Eu2+, Dy3+ phosphor were measured after various delay times. A single trap center is confirmed that conforms to a kinetics model with order greater than 1, leading to a suppression of TL intensity and a high temperature shift of the TL peak with longer delay times. A constant trap depth supports this phenomenon. Further, the decay curve of the afterglow and the change in initial trapped carrier concentration can be fitted using general-order kinetics and the fitting results show that the afterglow is close to a second-order kinetics process, which implies that most of the released carriers are retrapped.  相似文献   

13.
Kinetic analysis of a α-Al2O3 (TLD-500) thermoluminescent (TL) dosimeter was performed following irradiating the samples with 60Co gamma rays. The number of glow peaks contained in the complex glow curve of this phosphor was identified using the Tm ? Tstop method, which demonstrates three component glow peaks. A computerized glow curve deconvolution (CGCD) program was used to determine the trapping parameters of the three constituent glow peaks obtained at different dose levels and different populations of trapping states. To analyze the number of constituent glow peaks, we used a kinetic model to describe both the irradiation and heating stages. The predictions of the model for the TL response agreed well with the experimental data when three dosimetry traps were incorporated.  相似文献   

14.
Studies of thermally stimulated luminescence (TSL) of doped BaSO4 with Cu activator have been carried out. The polycrystalline sample of Cu-doped BaSO4 is prepared by recrystallisation method. The characterization and elemental analysis of BaSO4:Cu compound are carried out by X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDX). The compound has orthorhombic structure at room temperature. The TSL studies of Cu-doped BaSO4 sample show two glow peaks at 160 and 227 °C. Comparison of TL intensity of the most intensive glow peak of Cu- and Mn-doped BaSO4 compounds with that of undoped BaSO4 shows that addition of Cu and Mn impurity in BaSO4 compound enhances the TL intensity by about 9 and 3 times, respectively. Among the studied samples, namely undoped, Cu- and Mn-doped BaSO4, Cu-doped BaSO4 is found to be the most sensitive. The trap parameters namely order of kinetics (b), activation energy (E), frequency factor (s) and Balarin parameter (γ) associated with the most intensive glow peak, i.e. the 227 °C glow peak of BaSO4:Cu phosphor were determined by using isothermal decay method and glow curve shape (Chen's) method and these parameters are in good agreement.  相似文献   

15.
Small size (25 nm) Li2B4O7 nanoparticles doped with different concentrations of Cu, Ag and co-doped with Cu, Ag were prepared by solid state sintering at 700 °C. The crystalline phase and particle sizes analysis were carried out by XRD and TEM. FTIR study reveals the formation of vibrational bonds at 1600–1200 cm−1, 1500–700 cm−1, 950–870 cm−1 and 870–415 cm−1. The kinetic parameters of the TL glow curves were evaluated using CGCD procedure in R-software. The CW-OSL decay curves were fitted with third order exponential decay curves and photoionization cross sections of each component were evaluated. The lifetime of the main TL dosimetric peak were also calculated to check the stability of the signal. Dose responses of the synthesized Li2B4O7 nanoparticles for both the TL and CW-OSL were studied in the range of 0.02 mGy to50 Gy and found to be linear upto this range. Fading of the CW-OSL decay curves were also studied. The MDD of the synthesized samples were also calculated and observed to be 15 μGy.  相似文献   

16.
In thermoluminescence (TL) measurements radiative recombination takes place at various temperatures. Typically, the quantum efficiency of luminescence decreases with increasing temperature. We call this mechanism the thermal quenching. There is no simple method to ‘restore’ unquenched TL data. This paper presents an algorithm, based on the Monte-Carlo method, for calculating the quenching function and restoring the unquenched TL curve. For this purpose we use a series of TL glow curves measured at the same initial conditions with variable heating rates. The method is quite general and no particular kinetic model of TL need to be assumed. The reliability of the method is tested using computer generated TL glow curves obeying the simple trap model (STM) kinetics.  相似文献   

17.
The experimentally measured thermoluminescence (TL) glow curves of quartz samples are influenced by the presence of the thermal quenching effect, which involves a variation of the luminescence efficiency as a function of temperature. The real shape of the thermally unquenched TL glow curves is completely unknown. In the present work an attempt is made to reconstruct these unquenched glow curves from the quenched experimental data, and for two different types of quartz samples. The reconstruction is based on the values of the thermal quenching parameter W (activation energy) and C (a dimensionless constant), which are known from recent experimental work on these two samples. A computerized glow-curve deconvolution (CGCD) analysis was performed twice for both the reconstructed and the experimental TL glow curves. Special attention was paid to check for consistency between the results of these two independent CGCD analyses. The investigation showed that the reconstruction attempt was successful, and it is concluded that the analysis of reconstructed TL glow curves can provide improved values of the kinetic parameters E, s for the glow peaks of quartz. This also leads to a better evaluation of the half-lives of electron trapping levels used for dosimetry and luminescence dating.  相似文献   

18.
Radioluminescence and thermally stimulated luminescence measurements on Lu2O3, Lu2SiO5 (LSO) and Lu2SiO5:Ce3+ (LSO:Ce) reveal the presence of intrinsic ultraviolet luminescence bands. Characteristic emission with maximum at 256 nm occurs in each specimen and is attributed to radiative recombination of self-trapped excitons. Thermal quenching of this band obeys the Mott-Seitz relation yielding quenching energies 24, 38 and 13 meV for Lu2O3, LSO and LSO:Ce, respectively. A second intrinsic band appears at 315 nm in LSO and LSO:Ce, and at 368 nm in Lu2O3. Quenching curves for these bands show an initial increase in peak intensity followed by a decrease. Similarity in spectral peak position and quenching behavior indicate that this band has a common origin in each of the samples and is attributed to radiative recombination of self-trapped holes, in agreement with previous work on similar specimens. Comparison of glow curves and emission spectra show that the lowest temperature glow peaks in each specimen are associated with thermal decay of self-trapped excitons and self-trapped holes. Interplay between the intrinsic defects and extrinsic Ce3+ emission in LSO:Ce is strongly indicated.  相似文献   

19.
Magnesium tetraborate (MTB) doped with rare earth elements were synthesized by solid state sintering technique. Among the different rare earth dopants studied in this phosphor, gadolinium doped phosphors resulted in a single intense dosimetric peak at 250 °C and this is the first report in rare earth-doped MgB4O7 with a glow peak above 200 °C Photoluminescence (PL) and thermoluminescence (TL) studies were performed with this phosphor after exposing the powder samples to ionizing radiation. Monovalent dopants, including Na, Li and Ag, were found to increase the TL sensitivity of the MgB4O7:Gd phosphor without a shift in the TL peak temperature. The TL emission spectra showed characteristic emission of the host lattice, which showed an increase on doping with rare earth or monovalent codopants. The TL sensitivity, dose response curve, and post-irradiation storage stability were studied for the possible use of this material in radiation dosimetry applications. The TL parameters, such as the activation energy, the frequency factor, and the order of kinetics were determined for the Gd-doped MgB4O7 phosphor. The phosphor was found to be reusable after a few cycles of irradiation and annealing. The post-irradiation storage stability studies showed that this near tissue-equivalent phosphor, which has a gamma sensitivity five times that of TLD-100, is suitable for medical dosimetry applications.  相似文献   

20.
Li2B4O7 (LTB) single crystals doped with 0.5 mol% Mn and 0.005 mol% Eu have been grown by the Czochralski method. The presence of Eu3+ has been confirmed by photoluminescence spectra of non-irradiated crystals, whereas the presence of Mn2+ by absorption spectra of gamma-irradiated ones, as well as by EPR measurements. Unlike in most thermoluminescence studies on pure and doped LTB, performed usually above 300 K, glow curves have been recorded between 10 and 300 K in order to focus the attention on shallow traps. A broad, intense glow peak is observed around 80 K, with three weaker peaks at 205, 255, and 280 K. Based on supplementary Tmax − Tstop experiments, the trap parameters have been derived assuming that the glow curve is in fact formed by a superposition of a double Gaussian band related to a quasi-continuous distribution of trapping levels, and several glow peaks produced by discrete traps. The nature of the traps is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号