首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Resveratrol is a phytoalexin produced by many plants as a defense mechanism against stress-inducing conditions. The richest dietary sources of resveratrol are berries and grapes, their juices and wines. Good bioavailability of resveratrol is not reflected in its high biological activity in vivo because of resveratrol isomerization and its poor solubility in aqueous solutions. Proteins, cyclodextrins and nanomaterials have been explored as innovative delivery vehicles for resveratrol to overcome this limitation. Numerous in vitro and in vivo studies demonstrated beneficial effects of resveratrol in cardiovascular diseases (CVD). Main beneficial effects of resveratrol intake are cardioprotective, anti-hypertensive, vasodilatory, anti-diabetic, and improvement of lipid status. As resveratrol can alleviate the numerous factors associated with CVD, it has potential as a functional supplement to reduce COVID-19 illness severity in patients displaying poor prognosis due to cardio-vascular complications. Resveratrol was shown to mitigate the major pathways involved in the pathogenesis of SARS-CoV-2 including regulation of the renin-angiotensin system and expression of angiotensin-converting enzyme 2, stimulation of immune system and downregulation of pro-inflammatory cytokine release. Therefore, several studies already have anticipated potential implementation of resveratrol in COVID-19 treatment. Regular intake of a resveratrol rich diet, or resveratrol-based complementary medicaments, may contribute to a healthier cardio-vascular system, prevention and control of CVD, including COVID-19 disease related complications of CVD.  相似文献   

2.
The thrombotic thrombocytopenia syndrome (TTS), a complication of COVID-19 vaccines, involves thrombosis (often cerebral venous sinus thrombosis) and thrombocytopenia with occasional pulmonary embolism and arterial ischemia. TTS appears to mostly affect females aged between 20 and 50 years old, with no predisposing risk factors conclusively identified so far. Cases are characterized by thrombocytopenia, higher levels of D-dimers than commonly observed in venous thromboembolic events, inexplicably low fibrinogen levels and worsening thrombosis. Hyper fibrinolysis associated with bleeding can also occur. Antibodies that bind platelet factor 4, similar to those associated with heparin-induced thrombocytopenia, have also been identified but in the absence of patient exposure to heparin treatment. A number of countries have now suspended the use of adenovirus-vectored vaccines for younger individuals. The prevailing opinion of most experts is that the risk of developing COVID-19 disease, including thrombosis, far exceeds the extremely low risk of TTS associated with highly efficacious vaccines. Mass vaccination should continue but with caution. Vaccines that are more likely to cause TTS (e.g., Vaxzevria manufactured by AstraZeneca) should be avoided in younger patients for whom an alternative vaccine is available.  相似文献   

3.
Background. The rapid onset of a systemic pro-inflammatory state followed by acute respiratory distress syndrome is the leading cause of mortality in patients with COVID-19. We performed a retrospective observational study to explore the capacity of different complete blood cell count (CBC)-derived inflammation indexes to predict in-hospital mortality in this group. Methods. The neutrophil to lymphocyte ratio (NLR), derived NLR (dNLR), platelet to lymphocyte ratio (PLR), mean platelet volume to platelet ratio (MPR), neutrophil to lymphocyte × platelet ratio (NLPR), monocyte to lymphocyte ratio (MLR), systemic inflammation response index (SIRI), systemic inflammation index (SII), and the aggregate index of systemic inflammation (AISI) were calculated on hospital admission in 119 patients with laboratory confirmed COVID-19. Results. Non-survivors had significantly higher AISI, dNLR, NLPR, NLR, SII, and SIRI values when compared to survivors. Similarly, Kaplan–Meier survival curves showed significantly lower survival in patients with higher AISI, dNLR, MLR, NLPR, NLR, SII, and SIRI. However, after adjusting for confounders, only the SII remained significantly associated with survival (HR = 1.0001; 95% CI, 1.0000–1.0001, p = 0.029) in multivariate Cox regression analysis. Conclusions. The SII on admission independently predicts in-hospital mortality in COVID-19 patients and may assist with early risk stratification in this group.  相似文献   

4.
5.
Data obtained from several intensive care units around the world have provided substantial evidence of the strong association between impairment of the renal function and in-hospital deaths of critically ill COVID-19 patients, especially those with comorbidities and requiring renal replacement therapy (RRT). Acute kidney injury (AKI) is a common renal disorder of various etiologies characterized by a sudden and sustained decrease of renal function. Studies have shown that 5–46% of COVID-19 patients develop AKI during hospital stay, and the mortality of those patients may reach up to 100% depending on various factors, such as organ failures and RRT requirement. Catechins are natural products that have multiple pharmacological activities, including anti-coronavirus and reno-protective activities against kidney injury induced by nephrotoxic agents, obstructive nephropathies and AKI accompanying metabolic and cardiovascular disorders. Therefore, in this review, we discuss the anti-SARS-CoV-2 and reno-protective effects of catechins from a mechanistic perspective. We believe that catechins may serve as promising therapeutics in COVID-19-associated AKI due to their well-recognized anti-SARS-CoV-2, and antioxidant and anti-inflammatory properties that mediate their reno-protective activities.  相似文献   

6.
Cepharanthine (CEP) has excellent anti-SARS-CoV-2 properties, indicating its favorable potential for COVID-19 treatment. However, its application is challenged by its poor dissolubility and oral bioavailability. The present study aimed to improve the bioavailability of CEP by optimizing its solubility and through a pulmonary delivery method, which improved its bioavailability by five times when compared to that through the oral delivery method (68.07% vs. 13.15%). An ultra-performance liquid chromatography tandem-mass spectrometry (UPLC-MS/MS) method for quantification of CEP in rat plasma was developed and validated to support the bioavailability and pharmacokinetic studies. In addition, pulmonary fibrosis was recognized as a sequela of COVID-19 infection, warranting further evaluation of the therapeutic potential of CEP on a rat lung fibrosis model. The antifibrotic effect was assessed by analysis of lung index and histopathological examination, detection of transforming growth factor (TGF)-β1, interleukin-6 (IL-6), α-smooth muscle actin (α-SMA), and hydroxyproline level in serum or lung tissues. Our data demonstrated that CEP could significantly alleviate bleomycin (BLM)-induced collagen accumulation and inflammation, thereby exerting protective effects against pulmonary fibrosis. Our results provide evidence supporting the hypothesis that pulmonary delivery CEP may be a promising therapy for pulmonary fibrosis associated with COVID-19 infection.  相似文献   

7.
Hemostasis disorders play an important role in the pathogenesis, clinical manifestations, and outcome of COVID-19. First of all, the hemostasis system suffers due to a complicated and severe course of COVID-19. A significant number of COVID-19 patients develop signs of hypercoagulability, thrombocytopenia, and hyperfibrinolysis. Patients with severe COVID-19 have a tendency toward thrombotic complications in the venous and arterial systems, which is the leading cause of death in this disease. Despite the success achieved in the treatment of SARS-CoV-2, the search for new effective anticoagulants, thrombolytics, and fibrinolytics, as well as their optimal dose strategies, continues to be relevant. The wide therapeutic potential of seaweed sulfated polysaccharides (PSs), including anticoagulant, thrombolytic, and fibrinolytic activities, opens up new possibilities for their study in experimental and clinical trials. These natural compounds can be important complementary drugs for the recovery from hemostasis disorders due to their natural origin, safety, and low cost compared to synthetic drugs. In this review, the authors analyze possible pathophysiological mechanisms involved in the hemostasis disorders observed in the pathological progression of COVID-19, and also focus the attention of researchers on seaweed PSs as potential drugs aimed to correction these disorders in COVID-19 patients. Modern literature data on the anticoagulant, antithrombotic, and fibrinolytic activities of seaweed PSs are presented, depending on their structural features (content and position of sulfate groups on the main chain of PSs, molecular weight, monosaccharide composition and type of glycosidic bonds, the degree of PS chain branching, etc.). The mechanisms of PS action on the hemostasis system and the issues of oral bioavailability of PSs, important for their clinical use as oral anticoagulant and antithrombotic agents, are considered. The combination of the anticoagulant, thrombolytic, and fibrinolytic properties, along with low toxicity and relative cheapness of production, open up prospects for the clinical use of PSs as alternative sources of new anticoagulant and antithrombotic compounds. However, further investigation and clinical trials are needed to confirm their efficacy.  相似文献   

8.
(–)-Epigallocatechin-3-O-gallate (EGCG), the most abundant component of catechins in tea (Camellia sinensis (L.) O. Kuntze), plays a role against viruses through inhibiting virus invasiveness, restraining gene expression and replication. In this paper, the antiviral effects of EGCG on various viruses, including DNA virus, RNA virus, coronavirus, enterovirus and arbovirus, were reviewed. Meanwhile, the antiviral effects of the EGCG epi-isomer counterpart (+)-gallocatechin-3-O-gallate (GCG) were also discussed.  相似文献   

9.
Since COVID-19 has affected global public health, there has been an urgency to find a solution to limit both the number of infections, and the aggressiveness of the disease once infected. The main characteristic of this infection is represented by a strong alteration of the immune system which, day by day, increases the risk of mortality, and can lead to a multiorgan dysfunction. Because nutritional profile can influence patient’s immunity, we focus our interest on resveratrol, a polyphenolic compound known for its immunomodulating and anti-inflammatory properties. We reviewed all the information concerning the different roles of resveratrol in COVID-19 pathophysiology using PubMed and Scopus as the main databases. Interestingly, we find out that resveratrol may exert its role through different mechanisms. In fact, it has antiviral activity inhibiting virus entrance in cells and viral replication. Resveratrol also improves autophagy and decreases pro-inflammatory agents expression acting as an anti-inflammatory agent. It regulates immune cell response and pro-inflammatory cytokines and prevents the onset of thrombotic events that usually occur in COVID-19 patients. Since resveratrol acts through different mechanisms, the effect could be enhanced, making a totally natural agent particularly effective as an adjuvant in anti COVID-19 therapy.  相似文献   

10.
The coronavirus COVID-19 pandemic is the defining global health crisis, and potential drugs have attracted widespread attentions. The authors attempted to use the known potential drugs as teaching cases throughout the whole teaching process of heterocyclic chemistry. Under the special pandemic situation, the authors also focused on exploring and utilizing the ideological and political education cases that were related to pandemic as well as potential drugs of COVID-19. The ultimate purpose was to strengthen the effects on both knowledge teaching and value guiding, and thus improve the curriculum system construction. The reform of heterocyclic chemistry classroom teaching via case methods could build a bridge between "theoretical knowledge-heterocyclic chemistry" and "real world-drug application", which effectively aroused students' enthusiasm as well as initiative for learning, and thus significantly improved the teaching effects.  相似文献   

11.
The current COVID-19 pandemic has tested the resolve of the global community with more than 35 million infections worldwide and numbers increasing with no cure or vaccine available to date. Nanomedicines have an advantage of providing enhanced permeability and retention and have been extensively studied as targeted drug delivery strategies for the treatment of different disease. The role of monocytes, erythrocytes, thrombocytes, and macrophages in diseases, including infectious and inflammatory diseases, cancer, and atherosclerosis, are better understood and have resulted in improved strategies for targeting and in some instances mimicking these cell types to improve therapeutic outcomes. Consequently, these primary cell types can be exploited for the purposes of serving as a “Trojan horse” for targeted delivery to identified organs and sites of inflammation. State of the art and potential utilization of nanocarriers such as nanospheres/nanocapsules, nanocrystals, liposomes, solid lipid nanoparticles/nano-structured lipid carriers, dendrimers, and nanosponges for biomimicry and/or targeted delivery of bioactives to cells are reported herein and their potential use in the treatment of COVID-19 infections discussed. Physicochemical properties, viz., hydrophilicity, particle shape, surface charge, composition, concentration, the use of different target-specific ligands on the surface of carriers, and the impact on carrier efficacy and specificity are also discussed.  相似文献   

12.
Wenhao Li  Yanmei Li 《大学化学》1986,35(12):29-34
The COVID-19 pandemic caused significant losses to the global community. The pathogen, called SARSCoV-2, showed high infection rate and certain case-fatality rate, which bring great challenges to treatments. Vaccination is the major way for epidemic prevention which attracts several developers to conduct COVID-19 vaccine studies. This paper presents the design principle of a COVID-19 vaccine and summarizes the latest research progress on vaccine development. The authors hope to provide insights for understanding vaccine study of COVID-19.  相似文献   

13.
COVID-19 is an endothelial disease. All the major comorbidities that increase the risk for severe SARS-CoV-2 infection and severe COVID-19 including old age, obesity, diabetes, hypertension, respiratory disease, compromised immune system, coronary artery disease or heart failure are associated with dysfunctional endothelium. Genetics and environmental factors (epigenetics) are major risk factors for endothelial dysfunction. Individuals with metabolic syndrome are at increased risk for severe SARS-CoV-2 infection and poor COVID-19 outcomes and higher risk of mortality. Old age is a non-modifiable risk factor. All other risk factors are modifiable. This review also identifies dietary risk factors for endothelial dysfunction. Potential dietary preventions that address endothelial dysfunction and its sequelae may have an important role in preventing SARS-CoV-2 infection severity and are key factors for future research to address. This review presents some dietary bioactives with demonstrated efficacy against dysfunctional endothelial cells. This review also covers dietary bioactives with efficacy against SARS-CoV-2 infection. Dietary bioactive compounds that prevent endothelial dysfunction and its sequelae, especially in the gastrointestinal tract, will result in more effective prevention of SARS-CoV-2 variant infection severity and are key factors for future food research to address.  相似文献   

14.
15.
Ischemia-reperfusion myocardial damage is a paradoxical tissue injury occurring during percutaneous coronary intervention (PCI) in acute myocardial infarction (AMI) patients. Although this damage could account for up to 50% of the final infarct size, there has been no available pharmacological treatment until now. Oxidative stress contributes to the underlying production mechanism, exerting the most marked injury during the early onset of reperfusion. So far, antioxidants have been shown to protect the AMI patients undergoing PCI to mitigate these detrimental effects; however, no clinical trials to date have shown any significant infarct size reduction. Therefore, it is worthwhile to consider multitarget antioxidant therapies targeting multifactorial AMI. Indeed, this clinical setting involves injurious effects derived from oxygen deprivation, intracellular pH changes and increased concentration of cytosolic Ca2+ and reactive oxygen species, among others. Thus, we will review a brief overview of the pathological cascades involved in ischemia-reperfusion injury and the potential therapeutic effects based on preclinical studies involving a combination of antioxidants, with particular reference to resveratrol and quercetin, which could contribute to cardioprotection against ischemia-reperfusion injury in myocardial tissue. We will also highlight the upcoming perspectives of these antioxidants for designing future studies.  相似文献   

16.
Plant polysaccharides can increase the number and variety of beneficial bacteria in the gut and produce a variety of active substances, including short-chain fatty acids (SCFAs). Gut microbes and their specific metabolites have the effects of promoting anti-inflammatory activity, enhancing the intestinal barrier, and activating and regulating immune cells, which are beneficial for improving immunity. A strong immune system reduces inflammation caused by external viruses and other pathogens. Coronavirus disease 2019 (COVID-19) is still spreading globally, and patients with COVID-19 often have intestinal disease and weakened immune systems. This article mainly evaluates how polysaccharides in plants can improve the immune system barrier by improving the intestinal microecological balance, which may have potential in the prevention and treatment of COVID-19.  相似文献   

17.
As the break out of COVID-19 epidemic, the prevention and control work was consequently carried out. Chemistry plays an important role in the white war. The structure of mask contains the knowledge of interfacial chemistry. The material of mask encompasses the knowledge of polymer chemistry. Nucleic acid test and COVID-19 vaccine research need the knowledge of biological chemistry. The sanitizers involve the knowledge of inorganic and organic chemistry. The knowledge of physical chemistry takes effect in daily hand washing with soap. Each drug against COVID-19 virus was a complex organic compound. All the above things can be taken as appropriate examples in chemistry teaching to display the charm of chemistry. Meanwhile, these examples help students to realize that chemistry works as a vital part in our lives and therefore active their motivation to study chemistry well.  相似文献   

18.
BackgroundThe recent pandemic by COVID-19 is a global threat to human health. The disease is caused by SARS-CoV-2 and the infection rate is increased more quickly than MERS and SARS as their rapid adaptation to varied climatic conditions through rapid mutations. It becomes more severe due to the lack of proper therapeutic drugs, insufficient diagnostic tool, scarcity of appropriate drug, life supporting medical facility and mostly lack of awareness. Therefore, preventive measure is one of the important strategies to control. In this context, herbal medicinal plants received a noticeable attention to treat COVID-19 in Indian subcontinent. Here, 44 Indian traditional plants have been discussed with their novel phytochemicals that prevent the novel corona virus. The basic of SARS-CoV-2, their common way of transmission including their effect on immune and nervous system have been discussed. We have analysed their mechanism of action against COVID-19 following in-silico analysis. Their probable mechanism and therapeutic approaches behind the activity of phytochemicals to stimulate immune response as well as inhibition of viral multiplication discussed rationally. Thus, mixtures of active secondary metabolites/phytochemicals are the only choice to prevent the disease in countries where vaccination will take long time due to overcrowded population density.  相似文献   

19.
The current COVID-19 pandemic has a tremendous impact on daily life world-wide. Despite the ability to dampen the spread of SARS-CoV-2, the causative agent of the diseases, through restrictive interventions, it is believed that only effective vaccines will provide sufficient control over the disease and revert societal live back to normal. At present, a double-digit number of efforts are devoted to the development of a vaccine against COVID-19. Here, we provide an overview of these (pre)clinical efforts and provide background information on the technologies behind these vaccines. In addition, we discuss potential hurdles that need to be addressed prior to mass scale clinical translation of successful vaccine candidates.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号