首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Taraxacum officinale (TO) has been historically used for medicinal purposes due to its biological activity against specific disorders. To investigate the antioxidant and the antiproliferativepotential of TO essential oil in vitro and in vivo, the chemical composition of the essential oil was analyzed by GC-MS. The in vivo antioxidant capacity was assessed on liver and kidney homogenate samples from mice subjected to acetaminophen-induced oxidative stress and treated with TO essential oil (600 and 12,000 mg/kg BW) for 14 days. The in vitro scavenging activity was assayed using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and the reducing power methods. The cytotoxic effects against the HeLa cancer cell line were analyzed. The GC-MS analysis showed the presence of 34 compounds, 8 of which were identified as major constituents. The TO essential oil protected mice’s liver and kidneys from acetaminophen-induced oxidative stress by enhancing antioxidant enzymes (catalase, superoxide dismutase, and glutathione) and lowering malondialdehyde levels. In vitro, the TO essential oil demonstrated low scavenging activity against DPPH (IC50 = 2.00 ± 0.05 mg/mL) and modest reducing power (EC50 = 0.963 ± 0.006 mg/mL). The growth of the HeLa cells was also reduced by the TO essential oil with an inhibition rate of 83.58% at 95 µg/mL. Current results reveal significant antioxidant and antiproliferative effects in a dose-dependent manner and suggest that Taraxacum officinale essential oil could be useful in formulations for cancer therapy.  相似文献   

2.
Croton ferrugineus Kunth is an endemic species of Ecuador used in traditional medicine both for wound healing and as an antiseptic. In this study, fresh Croton ferrugineus leaves were collected and subjected to hydrodistillation for extraction of the essential oil. The chemical composition of the essential oil was determined by gas chromatography equipped with a flame ionization detector and gas chromatography coupled to a mass spectrometer using a non-polar and a polar chromatographic column. The antibacterial activity was assayed against three Gram-positive bacteria, one Gram-negative bacterium and one dermatophyte fungus. The radical scavenging properties of the essential oil was evaluated by means of DPPH and ABTS assays. The chemical analysis allowed us to identify thirty-five compounds representing more than 99.95% of the total composition. Aliphatic sesquiterpene hydrocarbon trans-caryophyllene was the main constituent with 20.47 ± 1.25%. Other main compounds were myrcene (11.47 ± 1.56%), β-phellandrene (10.55 ± 0.02%), germacrene D (7.60 ± 0.60%), and α-humulene (5.49 ± 0.38%). The essential oil from Croton ferrugineus presented moderate activity against Candida albicans (ATCC 10231) with an MIC of 1000 μg/mL, a scavenging capacity SC50 of 901 ± 20 µg/mL with the ABTS method, and very strong antiglucosidase activity with an IC50 of 146 ± 20 µg/mL.  相似文献   

3.
The present study was designed to evaluate the chemical composition and scolicidal effects of Pistacia atlantica Desf. extract against protoscoleces of hydatid cysts and its acute toxicity in mice model. Various concentrations of the methanolic extract (5–50 mg/mL) were used for 10–60 min. Viability of protoscoleces was confirmed using eosin exclusion test (0.1%). Acute toxicity was also determined in mice model. The main components were β-myrcene (41.4%), α-pinene (32.48%) and limonene (4.66%). Findings demonstrated that P. atlantica extract at the concentrations of 25 and 50 mg/mL after 20 and 10 min of exposure killed 100% protoscoleces. The LD50 of the intraperitoneal injection of the P. atlantica methanolic extract was 2.43 g/kg and the maximum non-fatal dose was 1.66 g/kg. Obtained results showed the potential of P. atlantica extract as a natural source with no significant toxicity for the production of new scolicidal agent to use in hydatid cyst surgery.  相似文献   

4.
Litsea glutinosa (L. glutinosa) is considered an evidence-based medicinal plant for the treatment of cancer, the leading cause of death worldwide. In our study, the in vitro antioxidant and in vivo anticancer properties of an essential ethno-medicinal plant, L. glutinosa, were examined using non-toxic doses and a phytochemical analysis was executed using gas-chromatography–mass-spectrometry. The in vitro antioxidant study of the L. glutinosa methanolic extract (LGBME) revealed a concentration-dependent antioxidant property. The bark extract showed promising antioxidant effects in the 2,2-diphenyl-1-picryl-hydrazyl (DPPH) assay. The strongest antioxidant activity was demonstrated at the maximum concentration (50 µg/mL). The IC50 values of the LGBME and BHT were 5.51 and 5.01 µg/mL, respectively. At the same concentration, the total antioxidant capacity of the LGBME was 0.161 µg/mL and the ferric reducing antioxidant power assay result of the LGBME was 1.783 µg/mL. In the cytotoxicity study, the LD50 of the LGBME and gallic acid were 24.93 µg/mL and 7.23 µg/mL, respectively. In the in vivo anticancer-activity studies, the LGBME, particularly at a dose of 150 mg/kg/bw, showed significant cell-growth inhibition, decreased tumor weight, increased mean survival rate, and upregulated the reduced hematological parameters in EAC (Ehrlich’s ascites carcinoma)-induced Swiss albino mice. The highest cell-growth inhibition, 85.76%, was observed with the dose of 150 mg/kg/bw. Furthermore, the upregulation of pro-apoptotic genes (p53, Bax) and the downregulation of anti-apoptotic Bcl-2 were observed. In conclusion, LGBME extract has several bioactive phytoconstituents, which confirms the antioxidant and anticancer properties of L. glutinosa.  相似文献   

5.
The objective of the current research is to develop ZnO-Manjistha extract (ZnO-MJE) nanoparticles (NPs) and to investigate their transdermal delivery as well as antimicrobial and antioxidant activity. The optimized formulation was further evaluated based on different parameters. The ZnO-MJE-NPs were prepared by mixing 10 mM ZnSO4·7H2O and 0.8% w/v NaOH in distilled water. To the above, a solution of 10 mL MJE (10 mg) in 50 mL of zinc sulfate was added. Box–Behnken design (Design-Expert software 12.0.1.0) was used for the optimization of ZnO-MJE-NP formulations. The ZnO-MJE-NPs were evaluated for their physicochemical characterization, in vitro release activity, ex vivo permeation across rat skin, antimicrobial activity using sterilized agar media, and antioxidant activity by the DPPH free radical method. The optimized ZnO-MJE-NP formulation (F13) showed a particle size of 257.1 ± 0.76 nm, PDI value of 0.289 ± 0.003, and entrapment efficiency of 79 ± 0.33%. Drug release kinetic models showed that the formulation followed the Korsmeyer–Peppas model with a drug release of 34.50 ± 2.56 at pH 7.4 in 24 h. In ex vivo studies ZnO-MJE-NPs-opt permeation was 63.26%. The antibacterial activity was found to be enhanced in ZnO-MJE-NPs-opt and antioxidant activity was found to be highest (93.14 ± 4.05%) at 100 µg/mL concentrations. The ZnO-MJE-NPs-opt formulation showed prolonged release of the MJE and intensified permeation. Moreover, the formulation was found to show significantly (p < 0.05) better antimicrobial and antioxidant activity as compared to conventional suspension formulations.  相似文献   

6.
Citrus plants are widely utilized for edible purposes and medicinal utility throughout the world. However, because of the higher abundance of the antimicrobial compound D-Limonene, the peel waste cannot be disposed of by biogas production. Therefore, after the extraction of D-Limonene from the peel wastes, it can be easily disposed of. The D-Limonene rich essential oil from the Citrus limetta risso (CLEO) was extracted and evaluated its radical quenching, bactericidal, and cytotoxic properties. The radical quenching properties were DPPH radical scavenging (11.35 ± 0.51 µg/mL) and ABTS scavenging (10.36 ± 0.55 µg/mL). There, we observed a dose-dependent antibacterial potential for the essential oil against pathogenic bacteria. Apart from that, the essential oil also inhibited the biofilm-forming properties of E. coli, P. aeruginosa, S. enterica, and S. aureus. Further, cytotoxicity was also exhibited against estrogen receptor-positive (MCF7) cells (IC50: 47.31 ± 3.11 µg/mL) and a triple-negative (MDA-MB-237) cell (IC50: 55.11 ± 4.62 µg/mL). Upon evaluation of the mechanism of action, the toxicity was mediated through an increased level of reactive radicals of oxygen and the subsequent release of cytochrome C, indicative of mitotoxicity. Hence, the D-Limonene rich essential oil of C. limetta is useful as a strong antibacterial and cytotoxic agent; the antioxidant properties exhibited also increase its utility value.  相似文献   

7.
Natural α-bisabolol has been widely used in cosmetics and is sourced mainly from the stems of Candeia trees that have become endangered due to over exploitation. The in vitro anti-inflammatory activity of cotton gin trash (CGT) essential oil and the major terpenoid (β-bisabolol) purified from the oil were investigated against lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages as well as the 3t3 and HS27 fibroblast cell lines. Nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), and interleukin 8 (IL-8) were measured using Greiss reagent, enzyme-linked immunosorbent assay (ELISA), and cytokine bead array (CBA)-flow cytometry. Non-toxic concentrations of CGT oil and β-bisabolol (1.6–50.0 µg/mL) significantly inhibited the production of the inflammatory mediators in a dose-dependent manner. Maximal inhibition by β-bisabolol was 55.5% for NO, 62.3% for PGE2, and 45.3% for TNF-α production in RAW cells. β-Bisabolol induced a level of inhibition similar to an equal concentration of α-bisabolol (50.0 µg/mL), a known anti-inflammatory agent. These results suggest β-bisabolol exerts similar in vitro effects to known topical anti-inflammatory agents and could therefore be exploited for cosmetic and therapeutic uses. This is the first study to report the in vitro anti-inflammatory activity of β-bisabolol in CGT essential oil.  相似文献   

8.
This exploratory investigation aimed to determine the chemical composition and evaluate some biological properties, such as antioxidant, anti-inflammatory, antidiabetic, and antimicrobial activities, of Matricaria chamomilla L. essential oils (EOs). EOs of M. chamomilla were obtained by hydrodistillation and phytochemical screening was performed by gas chromatography–mass spectrophotometry (GC-MS). The antimicrobial activities were tested against different pathogenic strains of microorganisms by using disc diffusion assay, the minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) methods. The antidiabetic activity was performed in vitro using the enzyme inhibition test. The antioxidant activity of EOs was tested using the free radical scavenging ability (DPPH method), ferrous ion chelating (FIC) ability, and β-carotene bleaching assay. The anti-inflammatory effects were tested in vivo using the carrageenan-induced paw edema method and in vitro using the inhibition of the lipoxygenase test. The analysis of the phytochemical composition by GC-MS revealed that camphor (16.42%) was the major compound of EOs, followed by 3-carene (9.95%), β-myrcene (8.01%), and chamazulene (6.54%). MCEO, honey, and their mixture exhibited antioxidant activity against the DPPH assay (IC50 ranging from 533.89 ± 15.05 µg/mL to 1945.38 ± 12.71 µg/mL). The mixture exhibited the best radical scavenging activity, with an IC50 of 533.89 ± 15.05 µg/mL. As antidiabetic effect, EO presented the best values against α-glucosidase (265.57 ± 0.03 μg/mL) and α-amylase (121.44 ± 0.05 μg/mL). The EOs and honey mixture at a dose of 100 mg/kg exhibited a high anti-inflammatory effect, with 63.75% edema inhibition after 3 h. The impact of EOs on the studied species showed an excellent antimicrobial (Staphylococcus aureus ATCC 29213 (22.97 ± 0.16 mm)), antifungal (Aspergillus niger (18.13 ± 0.18 mm)) and anti-yeast (Candida albicans (21.07 ± 0.24 mm) effect against all the tested strains. The results obtained indicate that the EOs of M. chamomilla could be a potential drug target against diabetes, inflammation and microbial infections; however, further investigations to assess their bioactive molecules individually and in combination are greatly required.  相似文献   

9.
In this study, methanol extracts (MEs) and essential oil (EO) of Angelica purpurascens (Avé-Lall.) Gill obtained from different parts (root, stem, leaf, and seed) were evaluated in terms of antioxidant activity, total phenolics, compositions of phenolic compound, and essential oil with the methods of 2,2-azino-bis(3ethylbenzo-thiazoline-6-sulfonic acid (ABTS•+), 2,2-diphenyl-1-picrylhydrazil (DPPH•) radical scavenging activities, and ferric reducing/antioxidant power (FRAP), the Folin–Ciocalteu, liquid chromatography−tandem mass spectrometry (LC−MS/MS), and gas chromatography-mass spectrometry (GC−MS), respectively. The root extract of A. purpurascens exhibited the highest ABTS•+, DPPH•, and FRAP activities (IC50: 0.05 ± 0.0001 mg/mL, IC50: 0.06 ± 0.002 mg/mL, 821.04 ± 15.96 µM TEAC (Trolox equivalent antioxidant capacity), respectively). Moreover, EO of A. purpurascens root displayed DPPH• scavenging activity (IC50: 2.95 ± 0.084 mg/mL). The root extract had the highest total phenolic content (438.75 ± 16.39 GAE (gallic acid equivalent), µg/mL)). Twenty compounds were identified by LC−MS/MS. The most abundant phenolics were ferulic acid (244.39 ± 15.64 μg/g extract), benzoic acid (138.18 ± 8.84 μg/g extract), oleuropein (78.04 ± 4.99 μg/g extract), and rutin (31.21 ± 2.00 μg/g extract) in seed, stem, root, and leaf extracts, respectively. According to the GC−MS analysis, the major components were determined as α-bisabolol (22.93%), cubebol (14.39%), α-pinene (11.63%), and α-limonene (9.41%) among 29 compounds. Consequently, the MEs and EO of A. purpurascens can be used as a natural antioxidant source.  相似文献   

10.
Essential oils of plants have been used widely in cosmetic preparations. Being both perfuming and active ingredients, the functions of essential oils mean they are high-value ingredients. In this study, the leaf of Etlingera elatior (Jack) or Torch ginger was used. The essential oils (EO) were prepared by conventional hydrodistillation (HD) and microwave-assisted hydrodistillation (MAHD). The volatile compounds of EOs were analyzed by gas chromatography spectroscopy (GC-MS). The antioxidant activities by means of DPPH radical scavenging and ferric-reducing antioxidant power (FRAP) were determined. The inhibition of tyrosinase activity was investigated. The cytotoxicity was performed against human fibroblast cell lines (NIH/3T3) and melanoma cell lines (A375 and B16F10). The decreasing melanin content was measured in melanoma cell lines. The resulting essential oils were detected for 41 compounds from HD extraction dominants by terpenes, namely sesquiterpenes (48.499%) and monoterpenes (19.419%), while 26 compounds were detected from MAHD with the fatty alcohols as the major group. The higher antioxidant activities were found in HD EO (IC50 of 16.25 ± 0.09 mg/mL from DPPH assay and 0.91 ± 0.01 mg TEAC/g extract from FRAP assay). The survival of normal fibroblast cell lines remained at 90% at 500 µg/mL HD EO, where the EO possessed the half-maximal toxicity dose (TD50) of 214.85 ± 4.647 and 241.128 ± 2.134 μg/mL on B16F10 and A375 cell lines, respectively. This could suggest that the EO is highly selective against the melanoma cell lines. The melanin content was decreased at the half-maximum efficacy (IC50) at 252.12 ± 3.02 and 253.56 ± 3.65 in the A375 and B1610 cell lines, respectively, which were approximately 2.8-fold lower than kojic acid, the standard compound. The results of this study evidence the use of Etlingera elatior (Jack) leaf as a source of essential oil as an active agent in cosmetics.  相似文献   

11.
This study was performed to investigate the effects of different supplemental light spectra and doses (duration and illuminance) on the essential oil of basil (Ocimum basilicum L.) cultivated in the net-house in Vietnam during four months. Ten samples of basil aerial parts were hydrodistilled to obtain essential oils which had the average yields from 0.88 to 1.30% (v/w, dry). The oils analyzed using GC-FID and GC-MS showed that the main component was methyl chavicol (87.4–90.6%) with the highest values found in the oils of basil under lighting conditions of 6 h/day and 150–200 µmol·m−2·s−1. Additional lighting conditions caused the significant differences (p < 0.001) in basil biomass and oil production with the highest values found in the oils of basil under two conditions of (1) 71% Red: 20% Blue: 9.0% UVA in at 120 μmol·m−2·s−1 in 6 h/day and (2) 43.5% Red: 43.5% Blue: 8.0% Green: 5.0% Far-Red at 100 μmol·m−2·s−1 in 6 h/day. The oils of basil in some formulas showed weak inhibitory effects on only the Bacillus subtilis strain. Different light spectra affect the biomass and essential oil production of basil, as well as the concentrations of the major components in the oil.  相似文献   

12.
Since some synthetic insecticides cause damage to human health, compounds in plants can be viable alternatives to conventional synthetic pesticides. Dittrichia viscosa L. is a perennial Mediterranean plant known to possess biological activities, including insecticidal properties. The chemical composition of an essential oil (EOD) from D. viscosa, as well as its antioxidant, antimicrobial, and insecticidal effects on the cowpea weevil (Callosobruchus maculatus) were determined. Forty-one volatile compounds were identified in EOD, which accounted for 97.5% of its constituents. Bornyl acetate (41%) was a major compound, followed by borneol (9.3%), α-amorphene (6.6%), and caryophyllene oxide (5.7%). EOD exhibited significant antioxidant activity in all tests performed, with an IC50 of 1.30 ± 0.05 mg/mL in the DPPH test and an EC50 equal to 36.0 ± 2.5 mg/mL in the FRAP assay. In the phosphor-molybdenum test, EOD results ranged from 39.81 ± 0.7 to 192.1 ± 0.8 mg AAE/g E. EOD was active on E. coli (9.5 ± 0.5 mm), S. aureus (31.0 ± 1.5 mm), C. albicans (20.4 ± 0.5 mm), and S. cerevisiae (28.0 ± 1.0 mm), with MICs ranging from 0.1 mg/mL to 3.3 mg/mL. We found that 1 µL of EOD caused 97.5 ± 5.0% insect mortality after 96 h in the inhalation test and 60.0 ± 8.3% in the ingestion assay. The median lethal concentration (LC50) was 7.8 ± 0.3 μL EO/L, while the effective concentration in the ingestion test (LC50) was 15.0 ± 2.1 μL EO/L. We found that 20 µL of EOD caused a reduction of more than 91% of C. maculatus laid eggs.  相似文献   

13.
Moringa oleifera leaf polyphenols (Mopp) were encapsulated with phytosomes to enhance their efficacy on 4T1 cancer cell lines. The Mopp were extracted via microwave-assisted extraction. Moringa oleifera polyphenol-loaded phytosomes (MoP) were prepared with the nanoprecipitation method and characterized using the dynamic light scattering and dialysis membrane techniques. The in vitro cytotoxic and antiproliferative activity were investigated with the (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazole) MTT assay. Acute toxicity was assessed using Swiss albino mice. An MoP particle size of 296 ± 0.29 nm, −40.1 ± 1.19 mV zeta potential, and polydispersity index of 0.106 ± 0.002 were obtained. The total phenolic content was 50.81 ± 0.02 mg GAE/g, while encapsulation efficiency was 90.32 ± 0.11%. The drug release profiles demonstrated biphasic and prolonged subsequent sustained release. In vitro assays indicated MoP had a low cytotoxicity effect of 98.84 ± 0.53 μg/mL, doxorubicin was 68.35 ± 3.508, and Mopp was 212.9 ± 1.30 μg/mL. Moreover, MoP exhibited the highest antiproliferative effect on 4T1 cancer cells with an inhibitory concentration of 7.73 ± 2.87 μg/mL and selectivity index > 3. The results indicated a significant difference (p ≤ 0.001) in MoP when compared to Mopp and doxorubicin. The in vivo investigation showed the safety of MoP at a dose below 2000 mg/kg. The present findings suggest that MoP may serve as an effective and promising formulation for breast cancer drug delivery and therapy.  相似文献   

14.
The aim of the study was to conduct phytochemical and pharmacological investigations of Wrightia coccinea (Roxb. ex Hornem.) Sims via several in vitro, in vivo, and in silico models. A total of four compounds were identified and isolated from the methanol extract of the bark and the methanol extract of the seed pulp of W. coccinea through successive chromatographic techniques and were characterized as 3β-acetyloxy-olean-12-en-28-ol (1), wrightiadione (2), 22β-hydroxylupeol (3), and β-sitosterol (4) by spectroscopic analysis. The aqueous fraction of the bark and chloroform fraction of the fruits provided the most potent antioxidant capacity (IC50 = 7.22 and 4.5 µg/mL, respectively) in DPPH free radical scavenging assay compared with the standard ascorbic acid (IC50 = 17.45 µg/mL). The methanol bark extract and the methanol fruit coat extract exerted anti-diarrheal activity by inhibiting 74.55 ± 0.67% and 77.78 ± 1.5% (mean ± SEM) of the diarrheal episode in mice, respectively, after four hours of loading the samples. In the hypoglycemic test, the methanol bark extract and the methanol fruit coat extract (400 mg/kg) produced a significant (p < 0.05) reduction in the blood glucose level in mice. Both doses of the plant extracts (200 mg/kg and 400 mg/kg) used in the study induced a significant (p < 0.05) increase in pain reaction time. The in vitro and in vivo findings were supported by the computational studies. The isolated compounds exhibited higher binding affinity compared with the standard drugs towards the active binding sites of glutathione reductase, epidermal growth factor receptor (EGFR), kappa opioid receptor, glucose transporter 3 (GLUT 3), Mu opioid receptor, and cyclooxygenase 2 (COX-2) proteins due to their potent antioxidant, cytotoxic, anti-diarrheal, hypoglycemic, and central and peripheral analgesic properties, respectively. The current findings concluded that W. coccinea might be a potential natural source for managing oxidative stress, diarrhea, hyperglycemia, and pain. Further studies are warranted for extensively phytochemical screening and establishing exact mechanisms of action.  相似文献   

15.
The current study aimed to explore the crude oils obtained from the n-hexane fraction of Scutellaria edelbergii and further analyzed, for the first time, for their chemical composition, in vitro antibacterial, antifungal, antioxidant, antidiabetic, and in vivo anti-inflammatory, and analgesic activities. For the phytochemical composition, the oils proceeded to gas chromatography-mass spectrometry (GC-MS) analysis and from the resultant chromatogram, 42 bioactive constituents were identified. Among them, the major components were linoleic acid ethyl ester (19.67%) followed by ethyl oleate (18.45%), linolenic acid methyl ester (11.67%), and palmitic acid ethyl ester (11.01%). Tetrazolium 96-well plate MTT assay and agar-well diffusion methods were used to evaluate the isolated oil for its minimum inhibitory concentrations (MIC), minimum bactericidal concentration (MBC), half-maximal inhibitory concentrations (IC50), and zone of inhibitions that could determine the potential antimicrobial efficacy’s. Substantial antibacterial activities were observed against the clinical isolates comprising of three Gram-negative bacteria, viz., Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa, and one Gram-positive bacterial strain, Enterococcus faecalis. The oils were also effective against Candida albicans and Fusarium oxysporum when evaluated for their antifungal potential. Moreover, significant antioxidant potential with IC50 values of 136.4 and 161.5 µg/mL for extracted oil was evaluated through DPPH (1,1-Diphenyl-2-picryl-hydrazyl) and ABTS assays compared with standard ascorbic acid where the IC50 values were 44.49 and 67.78 µg/mL, respectively, against the tested free radicals. The oils was also potent, inhibiting the α-glucosidase (IC50 5.45 ± 0.42 µg/mL) enzyme compared to the standard. Anti-glucosidase potential was visualized through molecular docking simulations where ten compounds of the oil were found to be the leading inhibitors of the selected enzyme based on interactions, binding energy, and binding affinity. The oil was found to be an effective anti-inflammatory (61%) agent compared with diclofenac sodium (70.92%) via the carrageenan-induced assay. An appreciable (48.28%) analgesic activity in correlation with the standard aspirin was observed through the acetic acid-induced writhing bioassay. The oil from the n-hexane fraction of S. edelbergii contained valuable bioactive constituents that can act as in vitro biological and in vivo pharmacological agents. However, further studies are needed to uncover individual responsible compounds of the observed biological potentials which would be helpful in devising novel drugs.  相似文献   

16.
In the present work, essential oil and fatty acids and extracts obtained from aerial parts of Phlomis linearis Boiss. & Bal. were investigated for chemical composition and biological activities. The phytochemical analyses were conducted with gas chromatography-mass spectrometry/flame ionisation detector (GC-MS/FID) and liquid chromatography-mass spectromtetry (LC-MS/MS) techniques. The extracts and essential oil were studied for α-amylase and acetylcholinesterase activities with two different spectrophotometric methods. Antimicrobial activities of the extracts were investigated by microdilution. The extracts were evaluated in vitro for cytotoxic effects against cancer and normal cell lines by MTT assay. The essential oil (EO) contained α-pinene (12.5%) and β-caryophyllene (10.7%) as main compounds. Palmitic (26.5%) and nonadecanoic acids (26.6%) were determined as fatty acids. Phytochemical analysis of the extracts found phenolic acids, phlinosides, verbascoside, and flavonoids. The extracts and essential oil demonstrated poor α-amylase inhibitory activity. The best acetylcholinesterase inhibitory activity was obtained for diethly ether extract of P. linearis (67.2 ± 3.4%) at 10 mg /mL concentration. Ethyl acetate extract found to be effective against Staphlococcus aureus at a minimum inhibitory concentration (MIC) of 156.26 µg/mL. Diethyl ether extract of P. linearis was active on A549 cell lines with an IC50 = 316 ± 4.16 µg/mL when compared with cisplatin IC50 = 24.43 ± 0.14 µg/mL. To the best of our knowledge, the present work is the first comprehensive report on anti-acetylcholinesterase, anti-α-amylase, and antimicrobial activities, as well as cytotoxic effects of P. linearis.  相似文献   

17.
The present study aimed to characterize the physical properties of nanoemulsion-based sodium alginate edible coatings containing myrtle (Myrtus communis L.) essential oil and to determine its inhibitory effects on Listeria monocytogenes in fresh Kasar cheese during the 24-day storage at 4 °C. The GC-MS analysis showed that the main components of myrtle essential oil were 1,8-cineol (38.64%), α-pinene (30.19%), d-limonene (7.51%), and α-ocimene (6.57%). Myrtle essential oil showed an inhibitory effect on all tested L. monocytogenes strains and this effect significantly increased after ultrasonication. Minimum inhibitory and minimum bactericidal concentrations of myrtle essential oil nanoemulsion were found to be 4.00–4.67 mg/mL and 5.00–7.33 mg/mL, respectively. The antibacterial activity of myrtle essential oil nanoemulsion against L. monocytogenes was confirmed by the membrane integrity and FESEM analyses. Nanoemulsion coatings containing myrtle essential oil showed antibacterial activity against L. monocytogenes with no adverse effects on the physicochemical properties of cheese samples. Nanoemulsion coatings containing 1.0% and 2.0% myrtle essential oil reduced the L. monocytogenes population in cheese during the storage by 0.42 and 0.88 log cfu/g, respectively. These results revealed that nanoemulsion-based alginate edible coatings containing myrtle essential oil have the potential to be used as a natural food preservative.  相似文献   

18.
The volatile components of essential oil (EO), SPME, and SPME of solvent extracts ( n -hexane, methanol, and water) obtained from fresh Serapias orientalis subsp. orientalis ( Soo ) were analyzed by GC-FID/MS. EO of Soo gave 11 compounds in the percentage of 99.97%; capronaldehyde (37.01%), 2-( E )-hexenal (23.19%), and n -nonanal (19.05%) were found to be major constituents. SPME GC-FID/MS analyses of fresh plant and solvent extracts of Soo revealed 7, 12, 7, and 4 compounds within the range of 99.7% to 99.9%. Limonene (76.5%, 41.7%, and 61.3%) was the major compound in SPMEs of the n -hexane and methanol extracts. α -Methoxy- p -cresol (52.9%) was the main component in its water extract. The antimicrobial activity of EO and the solvent extracts of Soo were screened against 9microorganisms. EO showed the best activity against Mycobacterium smegmatis , with 79.5 µg/mL MIC value. The n -hexane, methanol, and water extracts were the most active against the Staphylococcus aureus within the range of 81.25–125.0 µg/mL (MIC). IC 50 values for the lipase enzyme inhibitory activity of EO and solvent extracts ( n -hexane, methanol, and water) were determined to be 59.87 µg/mL, 64.03 µg/mL, 101.91 µg/mL, and 121.24 µg/mL, respectively.  相似文献   

19.
The objective of this work was to investigate the antidiabetic, antiglycation, and antioxidant potentials of ethanolic extract of seeds of Brazilian Passiflora edulis fruits (PESE), a major by-product of the juice industry, and piceatannol (PIC), one of the main phytochemicals of PESE. PESE, PIC, and acarbose (ACB) exhibited IC50 for alpha-amylase, 32.1 ± 2.7, 85.4 ± 0.7, and 0.4 ± 0.1 µg/mL, respectively, and IC50 for alpha-glucosidase, 76.2 ± 1.9, 20.4 ± 7.6, and 252 ± 4.5 µg/mL, respectively. The IC50 of PESE, PIC, and sitagliptin (STG) for dipeptidyl-peptidase-4 (DPP-4) was 71.1 ± 2.6, 1137 ± 120, and 0.005 ± 0.001 µg/mL, respectively. PESE and PIC inhibited the formation of advanced glycation end-products (AGE) with IC50 of 366 ± 1.9 and 360 ± 9.1 µg/mL for the initial stage and 51.5 ± 1.4 and 67.4 ± 4.6 µg/mL for the intermediate stage of glycation, respectively. Additionally, PESE and PIC inhibited the formation of β-amyloid fibrils in vitro up to 100%. IC50 values for 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) scavenging activity of PESE and PIC were 20.4 ± 2.1, and 6.3 ± 1.3 µg/mL, respectively. IC50 values for scavenging hypochlorous acid (HOCl) were similar in PESE, PIC, and quercetin (QCT) with values of 1.7 ± 0.3, 1.2 ± 0.5, and 1.9 ± 0.3 µg/mL, respectively. PESE had no cytotoxicity to the human normal bronchial epithelial (BEAS-2B), and alpha mouse liver (AML-12) cells up to 100 and 50 µg/mL, respectively. However, 10 µg/mL of the extract was cytotoxic to non-malignant breast epithelial cells (MCF-10A). PESE and PIC were found to be capable of protecting cultured human cells from the oxidative stress caused by the carcinogen NNKOAc at 100 µM. The in vitro evidence of the inhibition of alpha-amylase, alpha-glucosidase, and DPP-4 enzymes as well as antioxidant and antiglycation activities, warrants further investigation of the antidiabetic potential of P. edulis seeds and PIC.  相似文献   

20.
The purposes of this investigatory study were to determine the chemical composition of the essential oils (EOs) of Origanum compactum from two Moroccan regions (Boulemane and Taounate), as well as the evaluation of their biological effects. Determining EOs’ chemical composition was performed by a gas chromatography–mass spectrophotometer (GC-MS). The antioxidant activity of EOs was evaluated using free radical scavenging ability (DPPH method), fluorescence recovery after photobleaching (FRAP), and lipid peroxidation inhibition assays. The anti-inflammatory effect was assessed in vitro using the 5-lipoxygenase (5-LOX) inhibition test and in vivo using the carrageenan-induced paw edema model. Finally, the antibacterial effect was evaluated against several strains using the disk-diffusion assay and the micro-dilution method. The chemical constituent of O. compactum EO (OCEO) from the Boulemane zone is dominated by carvacrol (45.80%), thymol (18.86%), and α-pinene (13.43%). However, OCEO from the Taounate zone is rich in 3-carene (19.56%), thymol (12.98%), and o-cymene (11.16%). OCEO from Taounate showed higher antioxidant activity than EO from Boulemane. Nevertheless, EO from Boulemane considerably inhibited 5-LOX (IC50 = 0.68 ± 0.02 µg/mL) compared to EO from Taounate (IC50 = 1.33 ± 0.01 µg/mL). A similar result was obtained for tyrosinase inhibition with Boulemane EO and Taounate EO, which gave IC50s of 27.51 ± 0.03 μg/mL and 41.83 ± 0.01 μg/mL, respectively. The in vivo anti-inflammatory test showed promising effects; both EOs inhibit and reduce inflammation in mice. For antibacterial activity, both EOs were found to be significantly active against all strains tested in the disk-diffusion test, but O. compactum EO from the Boulemane region showed the highest activity. Minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) for O. compactum EO from the Boulemane region ranged from 0.06 to 0.25% (v/v) and from 0.15 to 0.21% (v/v) for O. compactum from the Taounate region. The MBC/MIC index revealed that both EOs exhibited remarkable bactericidal effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号