首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, the development, validation, and application of a new liquid chromatography post-column derivatization method for the determination of Colistin in human urine samples is demonstrated. Separation of Colistin was performed using a core–shell C18 analytical column in an alkaline medium in order (i) to be compatible with the o-phthalaldehyde-based post-column derivatization reaction and (ii) to obtain better retention of the analyte. The Colistin derivative was detected spectrofluorometrically (λextem = 340/460 nm) after post-column derivatization with o-phthalaldehyde and N-acetyl cysteine. The post-column derivatization parameters were optimized using the Box–Behnken experimental design, and the method was validated using the total error concept. The β-expectation tolerance intervals did not exceed the acceptance criteria of ±15%, meaning that 95% of future results would be included in the defined bias limits. The limit of detection of the method was adequate corresponding to 100 nmol·L−1. The mean analytical bias (expressed as relative error) in the spiking levels was suitable, being in the range of −2.8 to +2.5% for both compounds with the percentage relative standard deviation lower than 3.4% in all cases. The proposed analytical method was satisfactorily applied to the analysis of the drug in human urine samples.  相似文献   

2.
This study was performed to investigate the effects of different supplemental light spectra and doses (duration and illuminance) on the essential oil of basil (Ocimum basilicum L.) cultivated in the net-house in Vietnam during four months. Ten samples of basil aerial parts were hydrodistilled to obtain essential oils which had the average yields from 0.88 to 1.30% (v/w, dry). The oils analyzed using GC-FID and GC-MS showed that the main component was methyl chavicol (87.4–90.6%) with the highest values found in the oils of basil under lighting conditions of 6 h/day and 150–200 µmol·m−2·s−1. Additional lighting conditions caused the significant differences (p < 0.001) in basil biomass and oil production with the highest values found in the oils of basil under two conditions of (1) 71% Red: 20% Blue: 9.0% UVA in at 120 μmol·m−2·s−1 in 6 h/day and (2) 43.5% Red: 43.5% Blue: 8.0% Green: 5.0% Far-Red at 100 μmol·m−2·s−1 in 6 h/day. The oils of basil in some formulas showed weak inhibitory effects on only the Bacillus subtilis strain. Different light spectra affect the biomass and essential oil production of basil, as well as the concentrations of the major components in the oil.  相似文献   

3.
Olive oil is an important product in the Mediterranean diet, due to its health benefits and sensorial characteristics. Picholine marocaine is the most cultivated variety in Morocco. The present research aims to evaluate the phenolic compounds, vitamin E and fatty acids of commercial Picholine marocaine virgin olive oils (VOOs) from five different North Moroccan provinces (Chefchaouen, Taounate, Errachidia, Beni Mellal and Taza), using HPLC-photodiode array (PDA)/electrospray ionization (ESI)-MS, normal phase (NP)-HPLC/ fluorescence detector (FLD) and GC-flame ionization detector (FID)/MS, respectively. The obtained results showed an average content of 130.0 mg kg−1 of secoiridoids (oleuropein aglycone, 10-hydroxy-oleuropein aglycone and ligstroside aglycone, oleocanthal and oleacein), 108.1 mg kg−1 of phenolic alcohols (tyrosol and hydroxytyrosol), 34.7 mg kg−1 of phenolic acids (caffeic acid, ferulic acid and elenolic acid), and 8.24 mg kg−1 of flavonoids (luteolin, luteolin glucoside, apigenin). With regard to vitamin E, α-tocopherol was the most abundant vitamin E (57.9 mg kg−1), followed by α-tocotrienol (2.5 mg kg−1), γ-tocopherol (4.5 mg kg−1) and β-tocopherol (1.9 mg kg−1), while δ-tocopherol was not detected. Moreover, 14 fatty acids were found and, among them, oleic acid (76.1%), linoleic acid (8.1%) palmitic acid (8.7%) and stearic acid (2.5%) were the major fatty acids detected. Finally, heat map and principal component analysis allowed us to classify the studied provinces in terms of VOO chemical composition: Chefchaouen (tyrosol and hydroxytyrosol), Taounate (oleuropein aglycone), Errachidia (ferulic acid, w-3 and w-6), Beni Mellal (oleocanthal) and Taza (luteolin and oleic acid).  相似文献   

4.
Two-dimensional (2D) semiconductors with desirable bandgaps and high carrier mobility have great potential in electronic and optoelectronic applications. In this work, we proposed α-TeB and β-TeB monolayers using density functional theory (DFT) combined with the particle swarm-intelligent global structure search method. The high dynamical and thermal stabilities of two TeB structures indicate high feasibility for experimental synthesis. The electronic structure calculations show that the two structures are indirect bandgap semiconductors with bandgaps of 2.3 and 2.1 eV, respectively. The hole mobility of the β-TeB sheet is up to 6.90 × 102 cm2 V−1 s−1. By reconstructing the two structures, we identified two new horizontal and lateral heterostructures, and the lateral heterostructure presents a direct band gap, indicating more probable applications could be further explored for TeB sheets.  相似文献   

5.
In this study, the effect of media composition, N/P ratio and cultivation strategy on the formation of carotenoids in a Coelastrella sp. isolate was investigated. A two-stage process utilizing different media in the vegetative stage, with subsequent re-suspension in medium without nitrate, was employed to enhance the formation of carotenoids. The optimal growth and carotenoid content (β-carotene and lutein) in the vegetative phase were obtained by cultivation in M-8 and BG11 media. Use of a N/P ratio of 37.5 and low light intensity of 40 μmol m−2 s−1 (control conditions) led to optimal biomass production of up to 1.31 g L−1. Low concentrations of astaxanthin (maximum of 0.31 wt. %) were accumulated under stress conditions (nitrogen-deficient medium containing 1.5 % of NaCl and light intensity of 500 μmol m−2 s−1), while β-carotene and lutein (combined maximum of 2.12 wt. %) were produced under non-stress conditions. Lipid analysis revealed that palmitic (C16:0) and oleic (C18:1) constituted the main algal fatty acid chains (50.2 ± 2.1% of the total fatty acids), while esterifiable lipids constituted 17.2 ± 0.5% of the biomass by weight. These results suggest that Coelastrella sp. could also be a promising feedstock for biodiesel production.  相似文献   

6.
We explored the effects of different light intensities and photoperiods on the growth, nutritional quality and antioxidant properties of two Brassicaceae microgreens (cabbage Brassica oleracea L. and Chinese kale Brassica alboglabra Bailey). There were two experiments: (1) four photosynthetic photon flux densities (PPFD) of 30, 50, 70 or 90 μmoL·m−2·s−1 with red:blue:green = 1:1:1 light-emitting diodes (LEDs); (2) five photoperiods of 12, 14, 16, 18 or 20 h·d−1. With the increase of light intensity, the hypocotyl length of cabbage and Chinese kale microgreens shortened. PPFD of 90 μmol·m−2·s−1 was beneficial to improve the nutritional quality of cabbage microgreens, which had higher contents of chlorophyll, carotenoids, soluble sugar, soluble protein and vitamin C, as well as increased antioxidant capacity. The optimal PPFD for Chinese kale microgreens was 70 μmol·m−2·s−1. Increasing light intensity could increase the antioxidant capacity of cabbage and Chinese kale microgreens, while not significantly affecting glucosinolate (GS) content. The dry and fresh weight of cabbage and Chinese kale microgreens were maximized with a 14-h·d−1 photoperiod. The chlorophyll, carotenoid and soluble protein content in cabbage and Chinese kale microgreens were highest for a 16-h·d−1 photoperiod. The lowest total GS content was found in cabbage microgreens under a 12-h·d−1 photoperiod and in Chinese kale microgreens under 16-h·d−1 photoperiod. In conclusion, the photoperiod of 14~16 h·d−1, and 90 μmol·m−2·s−1 and 70 μmol·m−2·s−1 PPFD for cabbage and Chinese kale microgreens, respectively, were optimal for cultivation.  相似文献   

7.
This work aimed to prepare a nanoemulsion containing the essential oil of the Protium heptaphyllum resin and evaluate its biocidal activities against the different stages of development of the Aedes aegypti mosquito. Ovicide, pupicide, adulticide and repellency assays were performed. The main constituents were p-cymene (27.70%) and α-pinene (22.31%). The developed nanoemulsion showed kinetic stability and monomodal distribution at a hydrophilic–lipophilic balance of 14 with a droplet size of 115.56 ± 1.68 nn and a zeta potential of −29.63 ± 3.46 mV. The nanoemulsion showed insecticidal action with LC50 0.404 µg·mL−1 for the ovicidal effect. In the pupicidal test, at the concentration of 160 µg·mL−1, 100% mortality was reached after 24 h. For adulticidal activity, a diagnostic concentration of 200 µg·mL−1 (120 min) was determined. In the repellency test, a concentration of 200 µg·mL−1 during the 180 min of the test showed a protection index of 77.67%. In conclusion, the nanobiotechnological product derived from the essential oil of P. heptaphyllum resin can be considered as a promising colloid that can be used to control infectious disease vectors through a wide range of possible modes of applications, probably as this bioactive delivery system may allow the optimal effect of the P. heptaphyllum terpenes in aqueous media and may also induce satisfactory delivery to air interfaces.  相似文献   

8.
This study examines the solubility and thermodynamics of febuxostat (FBX) in a variety of mono solvents, including “water, methanol (MeOH), ethanol (EtOH), isopropanol (IPA), 1-butanol (1-BuOH), 2-butanol (2-BuOH), ethylene glycol (EG), propylene glycol (PG), polyethylene glycol-400 (PEG-400), ethyl acetate (EA), Transcutol-HP (THP), and dimethyl sulfoxide (DMSO)” at 298.2–318.2 K and 101.1 kPa. The solubility of FBX was determined using a shake flask method and correlated with “van’t Hoff, Buchowski-Ksiazczak λh, and Apelblat models”. The overall error values for van’t Hoff, Buchowski-Ksiazczak λh, and Apelblat models was recorded to be 1.60, 2.86, and 1.14%, respectively. The maximum mole fraction solubility of FBX was 3.06 × 10−2 in PEG-400 at 318.2 K, however the least one was 1.97 × 10−7 in water at 298.2 K. The FBX solubility increased with temperature and the order followed in different mono solvents was PEG-400 (3.06 × 10−2) > THP (1.70 × 10−2) > 2-BuOH (1.38 × 10−2) > 1-BuOH (1.37 × 10−2) > IPA (1.10 × 10−2) > EtOH (8.37 × 10−3) > EA (8.31 × 10−3) > DMSO (7.35 × 10−3) > MeOH (3.26 × 10−3) > PG (1.88 × 10−3) > EG (1.31 × 10−3) > water (1.14 × 10−6) at 318.2 K. Compared to the other combinations of FBX and mono solvents, FBX-PEG-400 had the strongest solute-solvent interactions. The apparent thermodynamic analysis revealed that FBX dissolution was “endothermic and entropy-driven” in all mono solvents investigated. Based on these findings, PEG-400 appears to be the optimal co-solvent for FBX solubility.  相似文献   

9.
Grindelia squarrosa (Pursh) Dunal is used in traditional medicine for treating various diseases; however, little is known about the immunomodulatory activity of essential oils from this plant. Thus, we isolated essential oils from the flowers (GEOFl) and leaves (GEOLv) of G. squarrosa and evaluated the chemical composition and innate immunomodulatory activity of these essential oils. Compositional analysis of these essential oils revealed that the main components were α-pinene (24.7 and 23.2% in GEOFl and GEOLv, respectively), limonene (10.0 and 14.7%), borneol (23.4 and 16.6%), p-cymen-8-ol (6.1 and 5.8%), β-pinene (4.0 and 3.8%), bornyl acetate (3.0 and 5.1%), trans-pinocarveol (4.2 and 3.7%), spathulenol (3.0 and 2.0%), myrtenol (2.5 and 1.7%), and terpinolene (1.7 and 2.0%). Enantiomer analysis showed that α-pinene, β-pinene, and borneol were present primarily as (−)-enantiomers (100% enantiomeric excess (ee) for (−)-α-pinene and (−)-borneol in both GEOFl and GEOLv; 82 and 78% ee for (−)-β-pinene in GEOFl and GEOLv), while limonene was present primarily as the (+)-enantiomer (94 and 96 ee in GEOFl and GEOLv). Grindelia essential oils activated human neutrophils, resulting in increased [Ca2+]i (EC50 = 22.3 µg/mL for GEOFl and 19.4 µg/mL for GEOLv). In addition, one of the major enantiomeric components, (−)-borneol, activated human neutrophil [Ca2+]i (EC50 = 28.7 ± 2.6), whereas (+)-borneol was inactive. Since these treatments activated neutrophils, we also evaluated if they were able to down-regulate neutrophil responses to subsequent agonist activation and found that treatment with Grindelia essential oils inhibited activation of these cells by the N-formyl peptide receptor 1 (FPR1) agonist fMLF and the FPR2 agonist WKYMVM. Likewise, (−)-borneol inhibited FPR-agonist-induced Ca2+ influx in neutrophils. Grindelia leaf and flower essential oils, as well as (−)-borneol, also inhibited fMLF-induced chemotaxis of human neutrophils (IC50 = 4.1 ± 0.8 µg/mL, 5.0 ± 1.6 µg/mL, and 5.8 ± 1.4 µM, respectively). Thus, we identified (−)-borneol as a novel modulator of human neutrophil function.  相似文献   

10.
Metal-organic frameworks (MOFs) have been rapidly developed for their broad applications in many different chemistry and materials fields. In this work, a multi-dentate building block 5-(4-(tetrazol-5-yl)phenyl)-isophthalic acid (H3L) containing tetrazole and carbolxylate moieties was employed for the synthesis of a two-dimensional (2D) lanthanide MOF [La(HL)(DMF)2(NO3)] (DMF = N,N-dimethylformamide) (1) under solvothermal condition. The fluorescent sensing application of 1 was investigated. 1 exhibits high sensitivity recognition for antibiotic nitrofurantoin (Ksv: 3.0 × 103 M−1 and detection limit: 17.0 μM) and amino acid l-tyrosine (Ksv: 1.4 × 104 M−1 and detection limit: 3.6 μM). This work provides a feasible detection platform of 2D MOFs for highly sensitive discrimination of antibiotics and amino acids.  相似文献   

11.
The chemical composition of three Citrus limon oils: lemon essential oil (LEO), lemon terpenes (LT) and lemon essence (LE), and their influence in the virulence factors production and motility (swarming and swimming) of two Pseudomonas aeruginosa strains (ATCC 27853 and a multidrug-resistant HT5) were investigated. The main compound, limonene, was also tested in biological assays. Eighty-four compounds, accounting for a relative peak area of 99.23%, 98.58% and 99.64%, were identified by GC/MS. Limonene (59–60%), γ-terpinene (10–11%) and β-pinene (7–15%) were the main compounds. All lemon oils inhibited specific biofilm production and bacterial metabolic activities into biofilm in a dose-dependent manner (20–65%, in the range of 0.1–4 mg mL−1) of both strains. Besides, all samples inhibited about 50% of the elastase activity at 0.1 mg mL−1. Pyocyanin biosynthesis decreases until 64% (0.1–4 mg mL−1) for both strains. Swarming motility of P. aeruginosa ATCC 27853 was completely inhibited by 2 mg mL−1 of lemon oils. Furthermore, a decrease (29–55%, 0.1–4 mg mL−1) in the synthesis of Quorum sensing (QS) signals was observed. The oils showed higher biological activities than limonene. Hence, their ability to control the biofilm of P. aeruginosa and reduce the production of virulence factors regulated by QS makes lemon oils good candidates to be applied as preservatives in the food processing industry.  相似文献   

12.
The objective of this study is to develop a comprehensive and simple method for the simultaneous determination of anthelmintic and antiprotozoal drug residues in fish. For sample preparation, we used the “quick, easy, cheap, effective, rugged, and safe” (QuEChERS) method with a simple modification. The sample was extracted with water and 1% formic acid in acetonitrile/methanol (MeCN/MeOH) (95:5, v/v), followed by phase separation (salting out) with MgSO4 and NaCl (4:1, w/w). After centrifugation, an aliquot of the extract was purified by dispersive solid-phase extraction (d-SPE) prior to liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. The method was validated at three concentration levels for all matrices, in accordance with the Codex guidelines (CAC/GL-71). Quantitative analysis was performed using the method of matrix-matched calibration. The recoveries were between 60.6% and 119.9%, with coefficients of variation (CV) <30% for all matrices. The limit of quantitation (LOQ) of the method ranged from 0.02 μg kg−1 to 4.8 μg kg−1 for all matrices. This comprehensive method can be used for the investigation of both anthelmintic and antiprotozoal drugs belonging to different chemical families in fishery products.  相似文献   

13.
The crystal structure and solid-state packing of 4-chloro-5H-1,2,3-dithiazol-5-one and two polymorphs of 4-chloro-5H-1,2,3-dithiazole-5-thione were analyzed and compared to structural data of similar systems. These five-membered S,N-rich heterocycles are planar with considerable bond localization. All three structures demonstrate tight solid-state packing without voids which is attributed to a rich network of short intermolecular electrostatic contacts. These include Sδ+…Nδ−, Sδ+…Oδ−, Sδ+…Clδ− and Sδ+…Sδ− interactions that are well within the sum of their van der Waals radii (∑VDW). B3LYP, BLYP, M06, mPW1PW, PBE and MP2 were employed to calculate their intramolecular geometrical parameters, the Fukui condensed functions to probe their reactivity, the bond order, Bird Index and NICS(1) to establish their aromaticity.  相似文献   

14.
The oxidation of transition metals such as manganese and copper by dioxygen (O2) is of great interest to chemists and biochemists for fundamental and practical reasons. In this report, the O2 reactivities of 1:1 and 1:2 mixtures of [(TPP)MnII] (1; TPP: Tetraphenylporphyrin) and [(tmpa)CuI(MeCN)]+ (2; TMPA: Tris(2-pyridylmethyl)amine) in 2-methyltetrahydrofuran (MeTHF) are described. Variable-temperature (−110 °C to room temperature) absorption spectroscopic measurements support that, at low temperature, oxygenation of the (TPP)Mn/Cu mixtures leads to rapid formation of a cupric superoxo intermediate, [(tmpa)CuII(O2•–)]+ (3), independent of the presence of the manganese porphyrin complex (1). Complex 3 subsequently reacts with 1 to form a heterobinuclear μ-peroxo species, [(tmpa)CuII–(O22–)–MnIII(TPP)]+ (4; λmax = 443 nm), which thermally converts to a μ-oxo complex, [(tmpa)CuII–O–MnIII(TPP)]+ (5; λmax = 434 and 466 nm), confirmed by electrospray ionization mass spectrometry and nuclear magnetic resonance spectroscopy. In the 1:2 (TPP)Mn/Cu mixture, 4 is subsequently attacked by a second equivalent of 3, giving a bis-μ-peroxo species, i.e., [(tmpa)CuII−(O22−)−MnIV(TPP)−(O22−)−CuII(tmpa)]2+ (7; λmax = 420 nm and δpyrrolic = −44.90 ppm). The final decomposition product of the (TPP)Mn/Cu/O2 chemistry in MeTHF is [(TPP)MnIII(MeTHF)2]+ (6), whose X-ray structure is also presented and compared to literature analogs.  相似文献   

15.
The chemical variability and the in vitro anti-inflammatory activity of the leaf essential oil from Ivorian Isolona dewevrei were investigated for the first time. Forty-seven oil samples were analyzed using a combination of CC, GC(RI), GC-MS and 13C-NMR, thus leading to the identification of 113 constituents (90.8–98.9%). As the main components varied drastically from sample to sample, the 47 oil compositions were submitted to hierarchical cluster and principal components analyses. Three distinct groups, each divided into two subgroups, were evidenced. Subgroup I−A was dominated by (Z)-β-ocimene, β-eudesmol, germacrene D and (E)-β-ocimene, while (10βH)-1β,8β-oxido-cadina-4-ene, santalenone, trans-α-bergamotene and trans-β-bergamotene were the main compounds of Subgroup I−B. The prevalent constituents of Subgroup II−A were germacrene B, (E)-β-caryophyllene, (5αH,10βMe)-6,12-oxido-elema-1,3,6,11(12)-tetraene and γ-elemene. Subgroup II−B displayed germacrene B, germacrene D and (Z)-β-ocimene as the majority compounds. Germacrene D was the most abundant constituent of Group III, followed in Subgroup III−A by (E)-β-caryophyllene, (10βH)-1β,8β-oxido-cadina-4-ene, germacrene D-8-one, and then in Subgroup III−B by (Z)-β-ocimene and (E)-β-ocimene. The observed qualitative and quantitative chemical variability was probably due to combined factors, mostly phenology and season, then harvest site to a lesser extent. The lipoxygenase inhibition by a leaf oil sample was also evaluated. The oil IC50 (0.020 ± 0.005 mg/mL) was slightly higher than the non-competitive lipoxygenase inhibitor NDGA IC50 (0.013 ± 0.003 mg/mL), suggesting a significant in vitro anti-inflammatory potential.  相似文献   

16.
The solubility of dehydroabietic acid in (−)-α-pinene, p-cymene, (−)-β-caryophyllene, (−)-α-pinene + p-cymene, (−)-β-caryophyllene + p-cymene and (−)-α-pinene + (−)-β-caryophyllene were determined using the laser monitoring method at atmospheric pressure. The solubility of dehydroabietic acid was positively correlated with temperature from 295.15 to 339.46 K. (−)-α-pinene, p-cymene, and (−)-β-caryophyllene were found to be suitable for the solubilization of dehydroabietic acid. In addition, the non-random two liquid (NRTL), universal quasi-chemical (UNIQUAC), modified Apelblat, modified Wilson, modified Wilson–van’t Hoff, and λh models were applied to correlate the determined solubility data. The modified Apelblat model gave the minor deviation for dehydroabietic acid in monosolvents, while the λh equation showed the best result in the binary solvents. A comparative analysis of compatibility between solutes and solvents was carried out using Hansen solubility parameters. The thermodynamic functions of ΔsolH0, ΔsolS0, ΔsolG0 were calculated according to the van’t Hoff equation, indicating that the dissolution was an entropy-driven heat absorption process. The Conductor-like Screening Model for Real Solvents (COSMO-RS) combined with an experimental value was applied to predict the reasonable solubility data of dehydroabietic acid in the selected solvents systems. The interaction energy of the dehydroabietic acid with the solvent was analyzed by COSMO-RS.  相似文献   

17.
In this study, methanol extracts (MEs) and essential oil (EO) of Angelica purpurascens (Avé-Lall.) Gill obtained from different parts (root, stem, leaf, and seed) were evaluated in terms of antioxidant activity, total phenolics, compositions of phenolic compound, and essential oil with the methods of 2,2-azino-bis(3ethylbenzo-thiazoline-6-sulfonic acid (ABTS•+), 2,2-diphenyl-1-picrylhydrazil (DPPH•) radical scavenging activities, and ferric reducing/antioxidant power (FRAP), the Folin–Ciocalteu, liquid chromatography−tandem mass spectrometry (LC−MS/MS), and gas chromatography-mass spectrometry (GC−MS), respectively. The root extract of A. purpurascens exhibited the highest ABTS•+, DPPH•, and FRAP activities (IC50: 0.05 ± 0.0001 mg/mL, IC50: 0.06 ± 0.002 mg/mL, 821.04 ± 15.96 µM TEAC (Trolox equivalent antioxidant capacity), respectively). Moreover, EO of A. purpurascens root displayed DPPH• scavenging activity (IC50: 2.95 ± 0.084 mg/mL). The root extract had the highest total phenolic content (438.75 ± 16.39 GAE (gallic acid equivalent), µg/mL)). Twenty compounds were identified by LC−MS/MS. The most abundant phenolics were ferulic acid (244.39 ± 15.64 μg/g extract), benzoic acid (138.18 ± 8.84 μg/g extract), oleuropein (78.04 ± 4.99 μg/g extract), and rutin (31.21 ± 2.00 μg/g extract) in seed, stem, root, and leaf extracts, respectively. According to the GC−MS analysis, the major components were determined as α-bisabolol (22.93%), cubebol (14.39%), α-pinene (11.63%), and α-limonene (9.41%) among 29 compounds. Consequently, the MEs and EO of A. purpurascens can be used as a natural antioxidant source.  相似文献   

18.
The thermodynamic, kinetic, and structural properties of Ln3+ complexes with the bifunctional DO3A-ACE4− ligand and its amide derivative DO3A-BACE4− (modelling the case where DO3A-ACE4− ligand binds to vector molecules) have been studied in order to confirm the usefulness of the corresponding Gd3+ complexes as relaxation labels of targeted MRI contrast agents. The stability constants of the Mg2+ and Ca2+ complexes of DO3A-ACE4− and DO3A-BACE4− complexes are lower than for DOTA4− and DO3A3−, while the Zn2+ and Cu2+ complexes have similar and higher stability than for DOTA4− and DO3A3− complexes. The stability constants of the Ln(DO3A-BACE) complexes increase from Ce3+ to Gd3+ but remain practically constant for the late Ln3+ ions (represented by Yb3+). The stability constants of the Ln(DO3A-ACE)4− and Ln(DO3A-BACE)4− complexes are several orders of magnitude lower than those of the corresponding DOTA4− and DO3A3− complexes. The formation rate of Eu(DO3A-ACE) is one order of magnitude slower than for Eu(DOTA), due to the presence of the protonated amine group, which destabilizes the protonated intermediate complex. This protonated group causes the Ln(DO3A-ACE) complexes to dissociate several orders of magnitude faster than Ln(DOTA) and its absence in the Ln(DO3A-BACE) complexes results in inertness similar to Ln(DOTA) (as judged by the rate constants of acid assisted dissociation). The 1H NMR spectra of the diamagnetic Y(DO3A-ACE) and Y(DO3A-BACE) reflect the slow dynamics at low temperatures of the intramolecular isomerization process between the SA pair of enantiomers, R-Λ(λλλλ) and S-Δ(δδδδ). The conformation of the Cα-substituted pendant arm is different in the two complexes, where the bulky substituent is further away from the macrocyclic ring in Y(DO3A-BACE) than the amino group in Y(DO3A-ACE) to minimize steric hindrance. The temperature dependence of the spectra reflects slower ring motions than pendant arms rearrangements in both complexes. Although losing some thermodynamic stability relative to Gd(DOTA), Gd(DO3A-BACE) is still quite inert, indicating the usefulness of the bifunctional DO3A-ACE4− in the design of GBCAs and Ln3+-based tags for protein structural NMR analysis.  相似文献   

19.
A pair of cobalt(II)-based hydrogen-bonded organic frameworks (HOFs), [Co(pca)2(bmimb)]n (1) and [Co2(pca)4(bimb)2] (2), where Hpca = p-chlorobenzoic acid, bmimb = 1,3-bis((2-methylimidazol-1-yl)methyl)benzene, and bimb = 1,4-bis(imidazol-1-ylmethyl)benzene were hydrothermally synthesized and characterized through infrared spectroscopy (IR), elemental and thermal analysis (EA), power X-ray diffraction (PXRD), and single-crystal X-ray diffraction (SCXRD) analyses. X-ray diffraction structural analysis revealed that 1 has a one-dimensional (1D) infinite chain network through the deprotonated pca monodentate chelation and with a μ2-bmimb bridge Co(II) atom, and 2 is a binuclear Co(II) complex construction with a pair of symmetry-related pca and bimb ligands. For both 1 and 2, each cobalt atom has four coordinated twisted tetrahedral configurations with a N2O2 donor set. Then, 1 and 2 are further extended into three-dimensional (3D) or two-dimensional (2D) hydrogen-bonded organic frameworks through C–H···Cl interactions. Topologically, HOFs 1 and 2 can be simplified as a 4-connected qtz topology with a Schläfli symbol {64·82} and a 4-connected sql topology with a Schläfli symbol {44·62}, respectively. The fluorescent sensing application of 1 was investigated; 1 exhibits high sensitivity recognition for Fe3+ (Ksv: 10970 M−1 and detection limit: 19 μM) and Cr2O72− (Ksv: 12960 M−1 and detection limit: 20 μM). This work provides a feasible detection platform of HOFs for highly sensitive discrimination of Fe3+ and Cr2O72− in aqueous media.  相似文献   

20.
Element doping and nanoparticle decoration of graphene is an effective strategy to fabricate biosensor electrodes for specific biomedical signal detections. In this study, a novel nonenzymatic glucose sensor electrode was developed with copper oxide (CuO) and boron-doped graphene oxide (B-GO), which was firstly used to reveal rhubarb extraction’s inhibitive activity toward α-amylase. The 1-pyreneboronic acid (PBA)-GO-CuO nanocomposite was prepared by a hydrothermal method, and its successful boron doping was confirmed by transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS), in which the boron doping rate is unprecedentedly up to 9.6%. The CuO load reaches ~12.5 wt.%. Further electrochemical results showed that in the enlarged cyclic voltammograms diagram, the electron-deficient boron doping sites made it easier for the electron transfer in graphene, promoting the valence transition from CuO to the electrode surface. Moreover, the sensor platform was ultrasensitive to glucose with a detection limit of 0.7 μM and high sensitivity of 906 μA mM−1 cm−2, ensuring the sensitive monitoring of enzyme activity. The inhibition rate of acarbose, a model inhibitor, is proportional to the logarithm of concentration in the range of 10−9–10−3 M with the correlation coefficient of R2 = 0.996, and an ultralow limit of detection of ~1 × 10−9 M by the developed method using the PBA-GO-CuO electrode. The inhibiting ability of Rhein-8-b-D-glucopyranoside, which is isolated from natural medicines, was also evaluated. The constructed sensor platform was proven to be sensitive and selective as well as cost-effective, facile, and reliable, making it promising as a candidate for α-amylase inhibitor screening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号