首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of nanoparticles (NPs) on microbiota homeostasis and their physiological relevance are still unclear. Herein, we compared the modulation and consequent pharmacological effects of oral administration of (−)-epigallocatechin-3-gallate (EGCG)-loaded β-cyclodextrin (β-CD) NPs (EGCG@β-CD NPs) and EGCG on gut microbiota. EGCG@β-CD NPs were prepared using self-assembly and their influence on the intestinal microbiome structure was analyzed using a metagenomics approach. The “Encapsulation efficiency (EE), particle size, polydispersity index (PDI), zeta potential” of EGCG@β-CD NPs were recorded as 98.27 ± 0.36%, 124.6 nm, 0.313 and –24.3 mV, respectively. Surface morphology of EGCG@β-CD NPs was observed as spherical. Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and molecular docking studies confirmed that EGCG could be well encapsulated in β-CD and formed as EGCG@β-CD NPs. After being continuously administered EGCG@β-CD NPs for 8 weeks, the serum cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and liver malondialdehyde (MDA) levels in the rats were significantly decreased, while the levels of catalase (CAT) and apolipoprotein-A1 (apo-A1) in the liver increased significantly in the hyperlipidemia model of rats, when compared to the high-fat-diet group. Furthermore, metagenomic analysis revealed that the ratio of Verrucomicrobia/Bacteroidetes was altered and Bacteroidetes decreased in the high-fat diet +200 mg/kg·bw EGCG@β-CD NPs group, while the abundance of Verrucomicrobia was significantly increased, especially Akkermansia muciniphila in rat feces. EGCG@β-CD NPs could be a promising EGCG delivery strategy to modulate the gut microbiota, enhancing its employment in the prevention of hyperlipidemia.  相似文献   

2.
Ageing-related bone impairment due to exposure to hyperglycemic environment is scarcely researched. The aim was to confirm the improvement effects of Native Collagen II on bone impairment in ageing db/db mice, and the ageing model was established by normal feeding for 48-week-old. Then, the ageing db/db mice were randomly assigned to Native Collagen II intervention, the ageing model, and the chondroitin sulfate + glucosamine hydrochloride control groups. After 12 weeks of treatment, femoral microarchitecture and biomechanical parameters were observed, biomarkers including bone metabolism, inflammatory cytokines, and oxidative stress were measured, and the gastrocnemius function and expressions of interleukin (IL) 1β, receptor activator of nuclear factor (NF)-κB ligand (RANKL), and tartrate-resistant acid phosphatase (TRAP) were analyzed. The results showed that the mice in the Native Collagen II intervention group showed significantly superior bone and gastrocnemius properties than those in the ageing model group, including bone mineral density (287.65 ± 72.77 vs. 186.97 ± 32.2 mg/cm3), gastrocnemius index (0.46 ± 0.07 vs. 0.18 ± 0.01%), muscle fiber diameter (0.0415 ± 0.005 vs. 0.0330 ± 0.002 mm), and cross-sectional area (0.0011 ± 0.00007 vs. 0.00038 ± 0.00004 mm2). The Native Collagen II intervention elevated bone mineralization and formation and decreased bone resorption, inflammatory cytokines, and the oxidative stress. In addition, lower protein expression of IL-1β, RANKL, and TRAP in the Native Collagen II intervention group was observed. These findings suggested that Native Collagen II improved bones impaired by T2DM during ageing, and the likely mechanism was partly due to inhibition of inflammation and oxidative stress.  相似文献   

3.
The role of individual cytochrome P450 (CYPs) responsible for the drug metabolism can be determined through their chemical inhibition. During the pandemic, dexamethasone and remdesivir with omeprazole were used for the treatment of COVID-19, while Ibuprofen was taken to treat the symptoms of fever and headache. This study aimed to examine the potency of ibuprofen remdesivir, and omeprazole as inhibitors of cytochrome P450s using rat liver microsomes in vitro. Dexamethasone a corticosteroid, sometimes used to reduce the body’s immune response in the treatment of COVID-19, was used as a probe substrate and the three inhibitors were added to the incubation system at different concentrations and analysed by a validated High Performance Liquid Chromatography (HPLC) method. The CYP3A2 isoenzyme is responsible for dexamethasone metabolism in vitro. The results showed that ibuprofen acts as a non-competitive inhibitor for CYP3A2 activity with Ki = 224.981 ± 1.854 µM and IC50 = 230.552 ± 2.020 µM, although remdesivir showed a mixed inhibition pattern with a Ki = 22.504 ± 0.008 µM and IC50 = 45.007 ± 0.016 µM. Additionally, omeprazole uncompetitively inhibits dexamethasone metabolism by the CYP3A2 enzyme activity with a Ki = 39.175 ± 0.230 µM and IC50 = 78.351 ± 0.460 µM. These results suggest that the tested inhibitors would not exert a significant effect on the CYP3A2 isoenzyme responsible for the co-administered dexamethasone drug’s metabolism in vivo.  相似文献   

4.
Amazonian fruits are excellent sources of bioactive compounds and can be used in beverages to improve the nutritional and sensorial characteristics. The present study aimed to develop a blend of murici (Byrsonima Crassifolia (L.) Kunth) and taperebá (Spondias Mombin L.) through experimental design and investigating the nutritional and sensorial characteristics of fruits and beverages. The murici was highlighted as higher vitamin C content (58.88 mg · 100 g−1) compared to taperebá (25.93 mg · 100 g−1). The murici and taperebá are good sources of total phenolic compounds (taperebá 1304.15 ± 19.14 mgGAE · 100 g−1 and the murici of 307.52 ± 19.73 mg GAE · 100 g−1) and flavonoids (174.87 ± 1.76 μgQE/g and 129.46 ± 10.68 μgQE/g, murici and taperebá, respectively), when compared to other Brazilian fruits. The antioxidant capacity in different methods revealed that the taperebá had a higher average in the results, only in the ORAC method and did not present a significant difference (p > 0.05) in relation to the murici. The beverage development was performed using experimental design 23, showed through sensory analysis and surface response methodology that murici and high sugar content (between 12.5 and 14.2% of sugar) influenced in sensory acceptance. Our findings indicate that beverages with improved nutrition and a sensory acceptance can be prepared using taperebá and murici fruits.  相似文献   

5.
Aspirin (also known as acetylsalicylic acid) is a drug intended to treat fever, pain, or inflammation. Treatment of moderate to severe cases of COVID-19 using aspirin along with dexamethasone has gained major attention globally in recent times. Thus, the purpose of this study was to use High-Performance Liquid Chromatography (HPLC) to evaluate the in vitro inhibition of CYP3A2 enzyme activity using aspirin in rat liver microsomes (RLMs). In this study, an efficient and sensitive HPLC method was developed using a reversed phase C18 column (X Bridge 4.6 mm × 150 mm, 3.5 µm) at 243 nm using acetonitrile and water (70:30 v/v). The linearity (r2 > 0.999), precision (<15%), accuracy and recovery (80–120%), limit of detection (5.60 µM and 0.06 µM), limit of quantification (16.98 µM and 0.19 µM), and stability of the newly developed method were validated for dexamethasone and 6β-hydroxydexamethasone, respectively, following International Conference on Harmonization (ICH) guidelines. This method was applied in vitro to measure CYP3A2 activity. The results showed that aspirin competitively inhibits 6β-hydroxylation (CYP3A2 activity) with an inhibition constant (Ki) = 95.46 µM and the concentration of the inhibitor causing 50% inhibition of original enzyme activity (IC50) = 190.92 µM. This indicated that there is a minimal risk of toxicity when dexamethasone and aspirin are co-administrated and a very low risk of toxicity and drug interaction with drugs that are a substrate for CYP3A2 in healthcare settings.  相似文献   

6.
In order to extract antioxidant phenolic compounds from spent grain (SG) two extraction methods were studied: the ultrasound-assisted method (US) and the Ultra-Turrax method (high stirring rate) (UT). Liquid to solid ratios, solvent concentration, time, and temperature/stirring rate were optimized. Spent grain extracts were analyzed for their total phenol content (TPC) (0.62 to 1.76 mg GAE/g SG DW for Ultra-Turrax pretreatment, and 0.57 to 2.11 mg GAE/g SG DW for ultrasound-assisted pretreatment), total flavonoid content (TFC) (0.6 to 1.67 mg QE/g SG DW for UT, and 0.5 to 1.63 mg QE/g SG DW for US), and antioxidant activity was measured using 2,2-diphenyl-2-picrylhydrazyl (DPPH) free radical (25.88% to 79.58% for UT, and 27.49% to 78.30% for UT). TPC was greater at a high stirring rate and high exposure time up to a certain extent for the Ultra-Turrax method, and at a high temperature for the ultrasound-assisted method. P-coumaric acid (20.4 ± 1.72 mg/100 SG DW for UT, and 14.0 ± 1.14 mg/100 SG DW for US) accounted for the majority of the phenolic found compounds, followed by rosmarinic (6.5 ± 0.96 mg/100 SG DW for UT, and 4.0 ± 0.76 mg/100 SG DW for US), chlorogenic (5.4 ± 1.1 mg/100 SG DW for UT, and non-detectable for US), and vanillic acids (3.1 ± 0.8 mg/100 SG DW for UT, and 10.0 ± 1.03 mg/100 SG DW for US) were found in lower quantities. Protocatechuic (0.7 ± 0.05 mg/100 SG DW for UT, and non-detectable for US), 4-hydroxy benzoic (1.1 ± 0.06 mg/100 SG DW for UT, and non-detectable for US), and caffeic acids (0.7 ± 0.03 mg/100 SG DW for UT, and non-detectable for US) were present in very small amounts. Ultrasound-assisted and Ultra-Turrax pretreatments were demonstrated to be efficient methods to recover these value-added compounds.  相似文献   

7.
Bioactive compounds from medicinal plants are good alternative treatments for T2DM. They are also sources of lead molecules that could lead to new drug discoveries. In this study, Bauhinia strychnifolia Craib. stem, a traditional Thai medicinal plant for detoxification, was extracted into five fractions, including crude extract, BsH, BsD, BsE, and BsW, by ethanolic maceration and sequential partition with hexane, dichloromethane, ethyl acetate, and water, respectively. Among these fractions, BsE contained the highest amounts of phenolics (620.67 mg GAE/g extract) and flavonoids (131.35 mg QE/g extract). BsE exhibited the maximum inhibitory activity against α-glucosidase (IC50 1.51 ± 0.01 µg/mL) and DPP-IV (IC50 2.62 ± 0.03 µg/mL), as well as dominantly promoting glucose uptake on 3T3-L1 adipocytes. Furthermore, the four compounds isolated from the BsE fraction, namely resveratrol, epicatechin, quercetin, and gallic acid, were identified. Quercetin demonstrated the highest inhibitory capacity against α-glucosidase (IC50 6.26 ± 0.36 µM) and DPP-IV (IC50 8.25 µM). In addition, quercetin prominently enhanced the glucose uptake stimulation effect on 3T3-L1 adipocytes. Altogether, we concluded that quercetin was probably the principal bioactive compound of the B. strychnifolia stem for anti-diabetic, and the flavonoid-rich fraction may be sufficiently potent to be an alternative treatment for blood sugar control.  相似文献   

8.
In the present work, a novel heterocyclic hybrid of a spirooxindole system was synthesized via the attachment of ferrocene and triazole motifs into an azomethine ylide by [3 + 2] cycloaddition reaction protocol. The X-ray structure of the heterocyclic hybrid (1″R,2″S,3R)-2″-(1-(3-chloro-4-fluorophenyl)-5-methyl-1H-1,2,3-triazole-4-carbonyl)-5-methyl-1″-(ferrocin-2-yl)-1″,2″,5″,6″,7″,7a″-hexahydrospiro[indoline-3,3″-pyrrolizin]-2-one revealed very well the expected structure, by using different analytical tools (FTIR and NMR spectroscopy). It crystallized in the triclinic-crystal system and the P-1-space group. The unit cell parameters are a = 9.1442(2) Å, b = 12.0872(3) Å, c = 14.1223(4) Å, α = 102.1700(10)°, β = 97.4190(10)°, γ = 99.1600(10)°, and V = 1484.81(7) Å3. There are two molecules per unit cell and one formula unit per asymmetric unit. Hirshfeld analysis was used to study the molecular packing of the heterocyclic hybrid. H···H (50.8%), H···C (14.2%), Cl···H (8.9%), O···H (7.3%), and N···H (5.1%) are the most dominant intermolecular contacts in the crystal structure. O···H, N···H, H···C, F···H, F···C, and O···O are the only contacts that have the characteristic features of short and significant interactions. AIM study indicated predominant covalent characters for the Fe–C interactions. Also, the electron density (ρ(r)) at the bond critical point correlated inversely with the Fe–C distances.  相似文献   

9.
The reaction of PtCl2 with s-triazine-type ligand (HTriaz) (1:1) in acetone under heating afforded a new [Pt(Triaz)Cl] complex. Single-crystal X-ray diffraction analysis showed that the ligand (HTriaz) is an NNO tridentate chelate via two N-atoms from the s-triazine and hydrazone moieties and one oxygen from the deprotonated phenolic OH. The coordination environment of the Pt(II) is completed by one Cl−1 ion trans to the Pt-N(hydrazone). Hirshfeld surface analysis showed that the most dominant interactions are the H···H, H···C and O···H intermolecular contacts. These interactions contributed by 60.9, 11.2 and 8.3% from the whole fingerprint area, respectively. Other minor contributions from the Cl···H, C···N, N···H and C···C contacts were also detected. Among these interactions, the most significant contacts are the O···H, H···C and H···H interactions. The amounts of the electron transfer from the ligand groups to Pt(II) metal center were predicted using NBO calculations. Additionally, the electronic spectra were assigned based on the TD-DFT calculations.  相似文献   

10.
Vaccinium dunalianum Wight, usually processed as a traditional folk tea beverage, is widely distributed in the southwest of China. The present study aimed to investigate the antioxidant, α-glucosidase and pancreatic lipase inhibitory activities of V. dunalianum extract and isolate the bioactive components. In this study, the crude extract (CE) from the buds of V. dunalianum was prepared by the ultrasound-assisted extraction method in 70% methanol and then purified with macroporous resin D101 to obtain the purified extract (PM). Five fractions (Fr. A–E) were further obtained by MPLC column (RP-C18). Bioactivity assays revealed that Fr. B with 40% methanol and Fr. D with 80% methanol had better antioxidant with 0.48 ± 0.03 and 0.62 ± 0.01 nM Trolox equivalent (TE)/mg extract for DPPH, 0.87 ± 0.02 and 1.58 ± 0.02 nM TE/mg extract for FRAP, 14.42 ± 0.41 and 19.25 ± 0.23 nM TE/mg extract for ABTS, and enzyme inhibitory effects with IC50 values of 95.21 ± 2.21 and 74.55 ± 3.85 for α-glucosidase, and 142.53 ± 11.45 and 128.76 ± 13.85 µg/mL for pancreatic lipase. Multivariate analysis indicated that the TPC and TFC were positively related to the antioxidant activities. Further phytochemical purification led to the isolation of ten compounds (1–10). 6-O-Caffeoylarbutin (7) showed significant inhibitory effects on α-glucosidase and pancreatic lipase enzymes with values of 38.38 ± 1.84 and 97.56 ± 7.53 µg/mL, and had the highest antioxidant capacity compared to the other compounds.  相似文献   

11.
This paper evaluates the effect of must hyperoxygenation on final wine. Lower concentrations of caftaric acid (0.29 mg·L−1), coutaric acid (1.37 mg·L−1) and Catechin (0.86 mg·L−1) were observed in hyperoxygenated must in contrast to control must (caftaric acid 32.78 mg·L−1, coutaric acid 5.01 mg·L−1 and Catechin 4.45 mg·L−1). In the final wine, hydroxybenzoic acids were found in higher concentrations in the control variant (gallic acid 2.58 mg·L−1, protocatechuic acid 1.02 mg·L−1, vanillic acid 2.05 mg·L−1, syringic acid 2.10 mg·L−1) than in the hyperoxygenated variant (2.01 mg·L−1, 0.86 mg·L−1, 0.98 mg·L−1 and 1.50 mg·L−1 respectively). Higher concentrations of total flavanols (2 mg·L−1 in hyperoxygenated must and 21 mg·L−1 in control must; 7.5 mg·L−1 in hyperoxygenated wine and 19.8 mg·L−1 in control wine) and polyphenols (97 mg·L−1 in hyperoxygenated must and 249 mg·L−1 in control must; 171 mg·L−1 in hyperoxygenated wine and 240 mg·L−1 in control wine) were found in both the must and the control wine. A total of 24 volatiles were determined using gas chromatography mass spectrometry. Statistical differences were achieved for isobutyl alcohol (26.33 mg·L−1 in control wine and 32.84 mg·L−1 in hyperoxygenated wine), or 1-propanol (7.28 mg·L−1 in control wine and 8.51 mg·L−1 in hyperoxygenated wine), while esters such as isoamyl acetate (1534.41 µg·L−1 in control wine and 698.67 µg·L−1 in hyperoxygenated wine), 1-hexyl acetate (136.32 µg·L−1 in control wine and 71.67 µg·L−1 in hyperoxygenated wine) and isobutyl acetate (73.88 µg·L−1 in control wine and 37.27 µg·L−1 in hyperoxygenated wine) had a statistically lower concentration.  相似文献   

12.
Essential oils (EOs) have promising antioxidant activities which are gaining interest as natural alternatives to synthetic antioxidants in the food and cosmetic industries. However, quantitative data on chain-breaking activity and on the kinetics of peroxyl radical trapping are missing. Five phenol-rich EOs were analyzed by GC-MS and studied by oxygen-uptake kinetics in inhibited controlled autoxidations of reference substrates (cumene and squalene). Terpene-rich Thymus vulgaris (thymol 4%; carvacrol 33.9%), Origanum vulgare, (thymol 0.4%; carvacrol 66.2%) and Satureja hortensis, (thymol 1.7%; carvacrol 46.6%), had apparent kinh (30 °C, PhCl) of (1.5 ± 0.3) × 104, (1.3 ± 0.1) × 104 and (1.1 ± 0.3) × 104 M−1s−1, respectively, while phenylpropanoid-rich Eugenia caryophyllus (eugenol 80.8%) and Cinnamomum zeylanicum, (eugenol 81.4%) showed apparent kinh (30 °C, PhCl) of (5.0 ± 0.1) × 103 and (4.9 ± 0.3) × 103 M−1s−1, respectively. All EOs already granted good antioxidant protection of cumene at a concentration of 1 ppm (1 mg/L), the duration being proportional to their phenolic content, which dictated their antioxidant behavior. They also afforded excellent protection of squalene after adjusting their concentration (100 mg/L) to account for the much higher oxidizability of this substrate. All investigated EOs had kinh comparable to synthetic butylated hydroxytoluene (BHT) were are eligible to replace it in the protection of food or cosmetic products.  相似文献   

13.
We have experimentally studied the influence of pulsed laser deposition parameters on the morphological and electrophysical parameters of vanadium oxide films. It is shown that an increase in the number of laser pulses from 10,000 to 60,000 and an oxygen pressure from 3 × 10−4 Torr to 3 × 10−2 Torr makes it possible to form vanadium oxide films with a thickness from 22.3 ± 4.4 nm to 131.7 ± 14.4 nm, a surface roughness from 7.8 ± 1.1 nm to 37.1 ± 11.2 nm, electron concentration from (0.32 ± 0.07) × 1017 cm−3 to (42.64 ± 4.46) × 1017 cm−3, electron mobility from 0.25 ± 0.03 cm2/(V·s) to 7.12 ± 1.32 cm2/(V·s), and resistivity from 6.32 ± 2.21 Ω·cm to 723.74 ± 89.21 Ω·cm. The regimes at which vanadium oxide films with a thickness of 22.3 ± 4.4 nm, a roughness of 7.8 ± 1.1 nm, and a resistivity of 6.32 ± 2.21 Ω·cm are obtained for their potential use in the fabrication of ReRAM neuromorphic systems. It is shown that a 22.3 ± 4.4 nm thick vanadium oxide film has the bipolar effect of resistive switching. The resistance in the high state was (89.42 ± 32.37) × 106 Ω, the resistance in the low state was equal to (6.34 ± 2.34) × 103 Ω, and the ratio RHRS/RLRS was about 14,104. The results can be used in the manufacture of a new generation of micro- and nanoelectronics elements to create ReRAM of neuromorphic systems based on vanadium oxide thin films.  相似文献   

14.
In the present investigation, we compared the radical-scavenging activities and phenolic contents of seven Taiwanese Cirsium species with a spectrophotometric method. We further analyzed their phytochemical profiles with high-performance liquid chromatography–photodiode array detection (HPLC–DAD). We found that the flower part of Cirsium japonicum var. australe (CJF) showed the best radical-scavenging activities against 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and the hypochlorite ion, for which the equivalents were 6.44 ± 0.17 mg catechin/g, 54.85 ± 0.66 mmol Trolox/g and 418.69 ± 10.52 mmol Trolox/g respectively. CJF also had the highest contents of total phenolics (5.23 ± 0.20 mg catechin/g) and phenylpropanoids (29.73 ± 0.72 mg verbascoside/g). According to the Pearson’s correlation coefficient, there was a positive correlation between the total phenylpropanoid content and ABTS radical-scavenging activities (r = 0.979). The radical-scavenging activities of the phenylpropanoids are closely related to their reducing power (r = 0.986). HPLC chromatograms obtained in validated HPLC conditions confirm that they have different phytochemical profiles by which they can be distinguished. Only CJF contained silicristin (0.66 ± 0.03 mg/g) and silydianin (9.13 ± 0.30 mg/g). CJF contained the highest contents of apigenin (5.56 ± 0.09 mg/g) and diosmetin (2.82 ± 0.10 mg/g). Among the major constituents, silicristin had the best radical-scavenging activities against DPPH (71.68 ± 0.66 mg catechin/g) and ABTS (3.01 ± 0.01 mmol Trolox/g). However, diosmetin had the best reducing power and radical-scavenging activity against the hypochlorite anion (41.57 ± 1.14 mg mmol Trolox/g). Finally, we found that flavonolignans (especial silicristin and silydianin) and diosmetin acted synergistically in scavenging radicals.  相似文献   

15.
Bisphenol Z (BPZ), bisphenol S (BPS), bisphenol C (BPC), and bisphenol F (BPF) had been widely used as alternatives to bisphenol A (BPA), but the toxicity data of these bisphenol analogues were very limited. In this study, the joint toxicity of BPZ, BPS, BPC, and BPF to zebrafish (Danio rerio) was investigated. The median half lethal concentrations (LC50) of BPZ, BPS, BPC, and BPF to zebrafish for 96 h were 6.9 × 105 µM, 3.9 × 107 µM, 7.1 × 105 µM, and1.6 × 106 µM, respectively. The joint toxicity effect of BPF–BPC (7.7 × 105–3.4 × 105µM) and BPZ–BPC (3.4 × 105–3.5 × 105µM) with the same toxic ratio showed a synergistic effect, which may be attributed to enzyme inhibition or induction theory. While the toxicity effect of the other two bisphenol analogue combined groups and multi-joint pairs showed an antagonistic effect due to the competition site, other causes need to be further explored. Meanwhile, the expression levels of the estrogen receptor genes (ERα, ERβ1) and antioxidant enzyme genes (SOD, CAT, GPX) were analyzed using a quantitative real-time polymerase chain reaction in zebrafish exposure to LC50 of BPZ, BPS, BPC, and BPF collected at 24, 48, 72, and 96 h. Relative expression of CAT, GPX, and ERβ1 mRNA declined significantly compared to the blank control, which might be a major cause of oxidant injury of antioxidant systems and the disruption of the endocrine systems in zebrafish.  相似文献   

16.
A series of N-pyridyl ureas bearing 1,2,4- (1a, 2a, and 3a) and 1,3,4-oxadiazole moiety (1b, 2b, 3b) was prepared and characterized by HRMS, 1H and 13C NMR spectroscopy, as well as X-ray diffraction. The inspection of the crystal structures of (1–3)a,b and the Hirshfeld surface analysis made possible the recognition of the (oxadiazole)···(pyridine) and (oxadiazole)···(oxadiazole) interactions. The presence of these interactions was confirmed theoretically by DFT calculations, including NCI analysis for experimentally determined crystal structures as well as QTAIM analysis for optimized equilibrium structures. The preformed database survey allowed the verification of additional examples of relevant (oxadiazole)···π interactions both in Cambridge Structural Database and in Protein Data Bank, including the cocrystal of commercial anti-HIV drug Raltegravir.  相似文献   

17.
Orange peel by-products generated in the food industry are an important source of value-added compounds that can be potentially reused. In the current research, the effect of oven-drying (50–70 °C) and freeze-drying on the bioactive compounds and antioxidant potential from Navelina, Salustriana, and Sanguina peel waste was investigated using pressurized extraction (ASE). Sixty volatile components were identified by ASE-GC-MS. The levels of terpene derivatives (sesquitenenes, alcohols, aldehydes, hydrocarbons, and esters) remained practically unaffected among fresh and freeze-dried orange peels, whereas drying at 70 °C caused significative decreases in Navelina, Salustriana, and Sanguina peels. Hesperidin and narirutin were the main flavonoids quantified by HPLC-MS. Freeze-dried Sanguina peels showed the highest levels of total-polyphenols (113.3 mg GAE·g−1), total flavonoids (39.0 mg QE·g−1), outstanding values of hesperedin (187.6 µg·g−1), phenol acids (16.54 mg·g−1 DW), and the greatest antioxidant values (DPPH•, FRAP, and ABTS•+ assays) in comparison with oven-dried samples and the other varieties. Nanotechnology approaches allowed the formulation of antioxidant-loaded nanoemulsions, stabilized with lecithin, starting from orange peel extracts. Those provided 70–80% of protection against oxidative UV-radiation, also decreasing the ROS levels into the Caco-2 cells. Overall, pressurized extracts from freeze-drying orange peel can be considered a good source of natural antioxidants that could be exploited in food applications for the development of new products of commercial interest.  相似文献   

18.
Salicylic acid is a key compound in nonsteroidal anti-inflammatory drugs that has been recently used for preventing the risk of hospitalization and death among COVID-19 patients and in preventing colorectal cancer (CRC) by suppressing two key proteins. Understanding drug–drug interaction pathways prevent the occurrence of adverse drug reactions in clinical trials. Drug–drug interactions can result in the variation of the pharmacodynamics and pharmacokinetic of the drug. Inhibition of the Cytochrome P450 enzyme activity leads to the withdrawal of the drug from the market. The aim of this paper was to develop and validate an HPLC-UV method for the quantification of 4′-hydroxydiclofenac as a CYP2C9 metabolite using salicylic acid as an inhibitor in rat liver microsomes. A CYP2C9 assay was developed and validated on the reversed phase C18 column (SUPELCO 25 cm × 4.6 mm × 5 µm) using a low-pressure gradient elution programming at T = 30 °C, a wavelength of 282 nm, and a flow rate of 1 mL/min. 4′-hydroxydiclofenac demonstrated a good linearity (R2 > 0.99), good reproducibility, low detection, and quantitation limit, and the inter and intra-day precision met the ICH guidelines (<15%). 4′-hydroxydiclofenac was stable for three days and showed an acceptable accuracy and recovery (80–120%) within the ICH guidelines in a rat liver microsome sample. This method will be beneficial for future applications of the in vitro inhibitory effect of salicylic acid on the CYP2C9 enzyme activity in rat microsomes and the in vivo administration of salicylic acid in clinical trials.  相似文献   

19.
Coix lacryma-jobi var. ma-yuen L. Gramineae is widely cultivated in Taiwan. Literature regarding the molecular action mechanism of coixol on tyrosinase and the application of coicis seed extracts to the processing of facial masks is still lacking. Solvent extractability analysis revealed that most of the polyphenolics in coicis seeds were water soluble (3.17 ± 0.12 to 3.63 ± 0.07 μg/mLGAE). In contrast, the methanolic extract contained the most flavonoids (0.06 ± 0.00~0.26 ± 0.03 μg/mL QE) and coixol (11.43 ± 0.13~12.83 ± 0.14 μg/mL), showing potent antioxidant capability. Additionally, the contents of coixenolide (176.77 ± 5.91 to 238.60 ± 0.21 μg/g), phytosterol (52.45 ± 2.05 to 58.23 ± 1.14 mg/g), and polysaccharides (3.42 ± 0.10 to 4.41 ± 0.10 mg/g) were rather high. The aqueous extract (10 μg/mL) and the ethanolic extract (1 mg/mL) showed no cytotoxicity to B16F10 melanocytes. More attractively, the ethanolic extract at 1 mg/mL caused 48.4% inhibition of tyrosinase activity in B16F10 melanocytes, and 50.7% on human tyrosinase (hTyr) fragment 369–377. Conclusively, the coicis seed extracts containing abundant nutraceuticals with promising anti-hTyr activity and moisturizing capability can serve as good ingredients for facial mask processing.  相似文献   

20.
Acacetin, apigenin, chrysin, and pinocembrin are flavonoid aglycones found in foods such as parsley, honey, celery, and chamomile tea. Flavonoids can act as substrates and inhibitors of the CYP3A4 enzyme, a heme containing enzyme responsible for the metabolism of one third of drugs on the market. The aim of this study was to investigate the inhibitory effect of selected flavonoids on the CYP3A4 enzyme, the kinetics of inhibition, the possible covalent binding of the inhibitor to the enzyme, and whether flavonoids can act as pseudo-irreversible inhibitors. For the determination of inhibition kinetics, nifedipine oxidation was used as a marker reaction. A hemochromopyridine test was used to assess the possible covalent binding to the heme, and incubation with dialysis was used in order to assess the reversibility of the inhibition. All the tested flavonoids inhibited the CYP3A4 enzyme activity. Chrysin was the most potent inhibitor: IC50 = 2.5 ± 0.6 µM, Ki = 2.4 ± 1.0 µM, kinact = 0.07 ± 0.01 min−1, kinact/Ki = 0.03 min−1 µM−1. Chrysin caused the highest reduction of heme (94.5 ± 0.5% residual concentration). None of the tested flavonoids showed pseudo-irreversible inhibition. Although the inactivation of the CYP3A4 enzyme is caused by interaction with heme, inhibitor-heme adducts could not be trapped. These results indicate that flavonoids have the potential to inhibit the CYP3A4 enzyme and interact with other drugs and medications. However, possible food–drug interactions have to be assessed clinically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号